Theoretical comparison
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 557-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper compared two different geometries of heat exchangers — working bodies for cryogenic magnetic refrigerators: a stacked plate and a packed bed heat exchanger. Using the similarity theory and unsteady heat flow equations, an operation performance of the heat exchangers based on gadolinium and its R-Gd solid solutions using water and methane as heat transfer media was simulated. It was found that due to the improved dynamics of the heat flux, the spherical packed bed heat exchanger provides a higher heat transfer rate in comparison with a plate regenerator. However, in the case of using water as heat transfer media stacked plate heat exchangers with a plate thickness of 100 mkm exceed the performance of a packed bed heat exchanger by 50% due to a lower porosity and, as a consequence, a larger amount of the magnetocaloric material. In the case of methane, an order of magnitude gain in refrigeration performance is due to the increased speed of the heat-transfer media in the heat exchanger, which makes it possible to efficiently remove all the generated heat from the working body.
Keywords: magnetocaloric effect, similarity theory, natural gas liquefaction.
@article{CHFMJ_2020_5_4_a4,
     author = {D. Yu. Karpenkov and A. Yu. Karpenkov and S. V. Taskaev},
     title = {Theoretical comparison},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {557--568},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a4/}
}
TY  - JOUR
AU  - D. Yu. Karpenkov
AU  - A. Yu. Karpenkov
AU  - S. V. Taskaev
TI  - Theoretical comparison
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 557
EP  - 568
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a4/
LA  - ru
ID  - CHFMJ_2020_5_4_a4
ER  - 
%0 Journal Article
%A D. Yu. Karpenkov
%A A. Yu. Karpenkov
%A S. V. Taskaev
%T Theoretical comparison
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 557-568
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a4/
%G ru
%F CHFMJ_2020_5_4_a4
D. Yu. Karpenkov; A. Yu. Karpenkov; S. V. Taskaev. Theoretical comparison. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 557-568. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a4/

[1] K. A. Gschneidner Jr., V. K.Pecharsky, A. O.Tsokol, “Recent developments in magnetocaloric materials”, Reports on Progress in Physics, 68:6 (2005), 1479 | DOI

[2] B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, Z. H. Cheng, “Recent progress in exploring magnetocaloric materials”, Advanced Materials, 21:45 (2009), 4545–4564 | DOI

[3] V. Franco, J. S.Blázquez, B. Ingale, A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models”, Annual Review of Materials Research, 42 (2012), 305–342 | DOI

[4] L. W. Li, “Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals”, Chinese Physics B., 25:3 (2016), 037502 | DOI

[5] V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices”, Progress in Materials Science, 93 (2018), 112–232 | DOI

[6] N. A. Zarkevich, D. D. Johnson, V. K.Pecharsky, “High-throughput search for caloric materials: the CaloriCool approach”, Journal of Physics D: Applied Physics, 51:2 (2017), 024002 | DOI

[7] T. Gottschall, K.P. Skokov, M. Fries, A.Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, “Making a cool choice: The materials library of magnetic refrigeration”, Advanced Energy Materials, 9:34 (2019), 1901322 | DOI

[8] A. Kitanovski, “Energy applications of magnetocaloric materials”, Advanced Energy Materials, 10:10 (2020), 1903741 | DOI

[9] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, New York, 2006 | MR | Zbl

[10] A.P. DeWasch, G. F. Froment, “A two dimensional heterogeneous model for fixed bed catalytic reactors”, Chemical Engineering Science, 26:5 (1971), 629–634 | DOI