Investigation of magneto-volume effect of DyCo${}_2$ compound under isothermal and adiabatic mode of magnetic field change
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 545-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new unic measurement setup for the simultaneous measurement of magneto-thermal and magnetostrictive properties of magnetic materials was made. A complex investigation of the magnetocaloric and magneto-volume effects of the DyCo$_2$ compound with the first order metamagnetic transition were carried out. It was found that the magnitude of the magneto-volume effect in the DyCo${}_2$ compound under the adiabatic magnetic field change is 20% less than under isothermal conditions. This effect is explained by the fact that during the adiabatic magnetization, the temperature of the sample changes due to magnetocaloric effect, which leads to the sample goes from the demagnetized state to a magnetized one along a way that does not correspond to the maximum effect. This behavior of the material should occur in the real magnetic solid-state heat pump designing.
Keywords: magnetocaloric effect, magnetostriction.
@article{CHFMJ_2020_5_4_a3,
     author = {A. Yu. Karpenkov and P. A. Rakunov and K. P. Skokov and D. Yu. Karpenkov and S. V. Taskaev},
     title = {Investigation of magneto-volume effect of {DyCo}${}_2$ compound under isothermal and adiabatic mode of magnetic field change},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {545--556},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Karpenkov
AU  - P. A. Rakunov
AU  - K. P. Skokov
AU  - D. Yu. Karpenkov
AU  - S. V. Taskaev
TI  - Investigation of magneto-volume effect of DyCo${}_2$ compound under isothermal and adiabatic mode of magnetic field change
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 545
EP  - 556
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a3/
LA  - ru
ID  - CHFMJ_2020_5_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Karpenkov
%A P. A. Rakunov
%A K. P. Skokov
%A D. Yu. Karpenkov
%A S. V. Taskaev
%T Investigation of magneto-volume effect of DyCo${}_2$ compound under isothermal and adiabatic mode of magnetic field change
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 545-556
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a3/
%G ru
%F CHFMJ_2020_5_4_a3
A. Yu. Karpenkov; P. A. Rakunov; K. P. Skokov; D. Yu. Karpenkov; S. V. Taskaev. Investigation of magneto-volume effect of DyCo${}_2$ compound under isothermal and adiabatic mode of magnetic field change. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 545-556. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a3/

[1] Jiles D.C., “Recent advances and future directions in magnetic materials”, Acta Materialia, 51 (2003), 5907 | DOI

[2] Morrison K., Lyubina J., Moore J.D. [et al.]., “Contributions to the entropy change in melt-spun $LaFe_{11.6}Si_{1.4}$”, Journal of Physics D: Applied Physics, 43:13 (2010), 132001 | DOI | MR

[3] Gutfleisch O., Willard M.A., Brück E. [et al.]., “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient”, Advanced Materials, 23:7 (2011), 821–842 | DOI

[4] Morrison K., Podgornykh S.M., ShcherbakovaYe.V. [et al.]., “Effect of Al substitution on the magnetocaloric properties of $La(Fe_{0.88}Si{0.12-x}Al_x)_13$”, Physical Review B, 83:14 (2011), 144415 | DOI

[5] Bratko M., Morrison K., de CamposA. [et al.]., “History dependence of directly observed magnetocaloric effects in $(Mn,Fe)As$”, Applied Physics Letters, 100:25 (2012), 252409 | DOI

[6] Dung N.H., Ou Z.Q., Caron L. [et al.]., “Mixed magnetism for refrigeration and energy conversion”, Advanced Energy Materials, 1:6 (2011), 1215–1219 | DOI

[7] Duc N.H., Anh D.T.K., BrommerP.E., “Metamagnetism, giant magnetoresistance and magnetocaloric effects in $RCo_2$-based compounds in the vicinity of the Curie temperature”, Physica B: Condensed Matter, 319:1–4 (2002), 1–8 | DOI

[8] Zhuang Y., Chen X., Zhou K., Li K., Ma. C., “Phase structure and magnetocaloric effect of $(Tb_{1-x}Dy_x)Co_2$ alloys.”, Journal of Rare Earths, 26 (2008), 749–752 | DOI

[9] Gratz E., Resel R., BurkovA.T. [et al.]., “The transport properties of $RCo_2$ compounds”, Journal of Physics: Condensed Matter, 7:33 (1995), 6687 | DOI

[10] Pecharsky V.K., Mudryk Y., Gschneidner Jr K.A., “In-situ powder diffraction in high magnetic fields”, Zeitschrift fur Kristallographie Supplements, 2007 (2007), 139–145 | DOI

[11] Khmelevskyi S., MohnP., “The order of the magnetic phase transitions in $RCo_2$ (R = rare earth) intermetallic compounds”, Journal of Physics: Condensed Matter, 12:45 (2000), 9453 | DOI

[12] Pourarian F., “Field induced volume magnetostriction in some rare earth-$Co_2$ compounds”, Physical Letters, 67A (1978), 5–6

[13] Levitin R.Z., Markosyan A.S., “Itinerant Metamagnetism”, Soviet Physics – Uspekhi, 31 (1988), 730–749 | DOI

[14] Andreev A.V., Handbook of Magnetic Materials, v. 8, ed. K.H.J. Buschow, North-Holland, Amsterdam, 1995, 59–187 pp.

[15] Gratz E., Markosyan A.S., “Physical properties of $RCo_2$ Laves phases”, J. Phys.: Condens. Matter, 13 (2001), R385–R413 | DOI

[16] Gschneidner Jr. K.A., Eyring L., Lander G.H., “Handbook on Physics and Chemistry of Rare Earths”, Elsevier Science B., 32 (2001)

[17] Singh N.K., Suresh K.G., Nigam A.K., Malik S.K., Coelho A.A., Gama S., “Itinerant electron metamagnetism and magnetocaloric effect in $RCo_2$-based Laves phase compounds”, Journal of Magnetism and Magnetic Materials, 317 (2007), 68–79 | DOI