Magnetocaloric effect and magnetization
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 537-544.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to experimental studies of the magnetocaloric effect in composite material based on MnAs in pulsed magnetic fields up to 40 kOe using the high-speed infrared fiber-optic temperature sensor with the simultaneous measurement of the sample magnetization by the induction method. The maximum values of the magnetocaloric effect in the samples of the composite material based on MnAs, obtained in the pulsed magnetic field of 40 kOe, were $\Delta T$ = 7.2 K at T0 = 318:5 K under heating, and $\Delta T$ = 9.4 K at $T_0$ = 314.5 K under cooling. In this case, the maximum energy loss for magnetizing of the sample in the vicinity of the 1st order phase transition was W = 59 J/kg.
Keywords: magnetocaloric effect, high magnetic field, MnAs.
@article{CHFMJ_2020_5_4_a2,
     author = {A. P. Kamantsev and V. V. Koledov and V. G. Shavrov and L. N. Butvin{\cyra} and A. V. Golovchan and A. P. Sivachenko and B. M. Todris and V. I. Val'kov and A. V. Koshelev and G. A. Shandryuk},
     title = {Magnetocaloric effect and magnetization},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {537--544},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a2/}
}
TY  - JOUR
AU  - A. P. Kamantsev
AU  - V. V. Koledov
AU  - V. G. Shavrov
AU  - L. N. Butvinа
AU  - A. V. Golovchan
AU  - A. P. Sivachenko
AU  - B. M. Todris
AU  - V. I. Val'kov
AU  - A. V. Koshelev
AU  - G. A. Shandryuk
TI  - Magnetocaloric effect and magnetization
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 537
EP  - 544
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a2/
LA  - ru
ID  - CHFMJ_2020_5_4_a2
ER  - 
%0 Journal Article
%A A. P. Kamantsev
%A V. V. Koledov
%A V. G. Shavrov
%A L. N. Butvinа
%A A. V. Golovchan
%A A. P. Sivachenko
%A B. M. Todris
%A V. I. Val'kov
%A A. V. Koshelev
%A G. A. Shandryuk
%T Magnetocaloric effect and magnetization
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 537-544
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a2/
%G ru
%F CHFMJ_2020_5_4_a2
A. P. Kamantsev; V. V. Koledov; V. G. Shavrov; L. N. Butvinа; A. V. Golovchan; A. P. Sivachenko; B. M. Todris; V. I. Val'kov; A. V. Koshelev; G. A. Shandryuk. Magnetocaloric effect and magnetization. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 537-544. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a2/

[1] (In Russ.)

[2] Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices”, Progress in Materials Science, 93 (2018), 112–232 | DOI

[3] A. Kitanovski, J.Tušek, U.Tomc, U. Plaznik, M.Ožbolt, A.Poredoš., Magnetocaloric Energy Conversion: From Theory to Applications, Springer,, 2015

[4] L. Pytlik, A. Zieb́a, “Magnetic phase diagram of MnAs”, Journal of Magnetism and Magnetic materials, 51 (1985), 199–210 | DOI

[5] L.Tocado, E.Palacios, R. Burriel, “Adiabatic measurement of the giant magnetocaloric effect in MnAs”, Journal of Thermal Analysis and Calorimetry, 84 (2006), 213–217 | DOI

[6] Mitsiuk V.I., Pankratov N.Y., Govor G.A., Nikitin S.A., Smarzhevskaya A.I., “Magnetostructural phase transitions in manganese arsenide single crystals”, Physics of the Solid State, 54 (2012,), 1988–1995 | DOI

[7] E. Brück, O.Tegus, D. C. Thanh, N. T.Trung, K. H.J. Buschow, “A review on Mn based materials for magnetic refrigeration: Structure and properties”, International Journal of Refrigeration, 31 (2008), 763–770 | DOI

[8] Yu. SKoshkid'ko, E. T. Dilmieva, J. Cwik, K. Rogacki, D.Kowalska, A.P. Kamantsev, V. V.Koledov, A. V. Mashirov, V. G. Shavrov, V. I.Valkov, A. V. Golovchan, A.P. Sivachenko, S. N. Shevyrtalov, V. V. Rodionova, I. V. Shchetinin, V. Sampath, “Giant reversible adiabatic temperature change and isothermal heat transfer of MnAs single crystals studied by direct method in high magnetic fields”, Journal of Alloys and Compounds, 798 (2019), 810–819 | DOI

[9] A.P. Kamantsev, V. V.Koledov, A. V. Mashirov, V. G. Shavrov, N. H.Yen, P. T. Thanh, V. M. Quang, N. H. Dan, A. S. Los, A. Gilewski, I. S.Tereshina, L. N. Butvina, “Measurement of magnetocaloric effect in pulsed magnetic fields with the help of infrared fiber optical temperature sensor”, Journal of Magnetism and Magnetic Materials, 440 (2017), 70–73 | DOI

[10] L. N.Butvina, O. V. Sereda, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, “Single-mode microstructured optical fiber for the middle infrared”, Optics Letters, 32 (2007), 334–336 | DOI

[11] L. N. Butvina, O. V. Sereda, A. L. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, “Large-mode-area single-mode microstructured optical fibre for the mid- IR region”, Quantum Electronics, 39 (2009), 283 | DOI

[12] Wool A.F., Todris B.M., Pulsed magnetometer for measurements in high magnetic fields under pressure, DonFTI AN UkrSSR, Donetsk, 1988 (In Russ.)

[13] Kamantsev A.P., Amirov A.A., Koshkid'koYu.S., Salazar Mejía C., Mashirov A.V., Aliev A.M., Koledov V.V., Shavrov V.G., “Magnetocaloric effect in alloy Fe49Rh51 in pulsed magnetic fields up to 50 T”, Physics of the Solid State, 62 (2020), 160–163 | DOI