Scaling magnetic and magnetocaloric properties
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 635-642.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report on magnetic and magnetocaloric properties of polycrystalline Gd$_{100-x}$Er$_x$Al$_2$ ($x = 0; 50$). It was found that substitution of Gd for Er does not affect considerably the value of the isothermal magnetic entropy change, which is equal to $\Delta S_M = –5.0\ J/(\text{kg} \times \text{K})$ at $T_C = 163$ K for GdAl$_2$ and $\Delta S_M = -4.9\ J/(\text{kg}\times \text{K})$ at $T_C = 97 K$ for Gd$_{0.5}$Er$_{0.5}$Al$_2$ (for the magnetic field change of $3$ T). However, in the Gd$_{0.5}$Er$_{0.5}$Al$_2$ alloy, a large MCE is observed in a wide temperature range $\Delta T = 66$ K, which makes this materials promising for a magnetic cooling technology at low temperatures.
Keywords: magnetocaloric effect, magnetic cooling, Laves phase, natural gas liquefaction, ferromagnet, rare-earth element.
@article{CHFMJ_2020_5_4_a12,
     author = {S. V. Taskaev and V. V. Khovailo and M. N. Ulyanov and D. Bataev and A. A. Basharova and M. V. Kononova and D. V. Plakhotskiy and M. Yu. Bogush and M. A. Gavrilova and D. A. Zherebtsov and Z. Hu},
     title = {Scaling magnetic and magnetocaloric properties},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {635--642},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a12/}
}
TY  - JOUR
AU  - S. V. Taskaev
AU  - V. V. Khovailo
AU  - M. N. Ulyanov
AU  - D. Bataev
AU  - A. A. Basharova
AU  - M. V. Kononova
AU  - D. V. Plakhotskiy
AU  - M. Yu. Bogush
AU  - M. A. Gavrilova
AU  - D. A. Zherebtsov
AU  - Z. Hu
TI  - Scaling magnetic and magnetocaloric properties
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 635
EP  - 642
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a12/
LA  - en
ID  - CHFMJ_2020_5_4_a12
ER  - 
%0 Journal Article
%A S. V. Taskaev
%A V. V. Khovailo
%A M. N. Ulyanov
%A D. Bataev
%A A. A. Basharova
%A M. V. Kononova
%A D. V. Plakhotskiy
%A M. Yu. Bogush
%A M. A. Gavrilova
%A D. A. Zherebtsov
%A Z. Hu
%T Scaling magnetic and magnetocaloric properties
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 635-642
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a12/
%G en
%F CHFMJ_2020_5_4_a12
S. V. Taskaev; V. V. Khovailo; M. N. Ulyanov; D. Bataev; A. A. Basharova; M. V. Kononova; D. V. Plakhotskiy; M. Yu. Bogush; M. A. Gavrilova; D. A. Zherebtsov; Z. Hu. Scaling magnetic and magnetocaloric properties. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 635-642. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a12/

[1] Gutfleisch O., Gottschall T., Fries M., Benke D., Radulov I., Skokov K.P., Wende H., Gruner M., Acet M., EntelP., Farle M., “Mastering hysteresis in magnetocaloric materials”, Philosophical Transactions of the Royal Society A, 374 (2016), 20150308 | DOI

[2] Chu F., Chen Z., FullerC.J., Lin C.L., Mihalisin T., “Superconductivity and structural transformation in $HfV_2$ and $Nd$-doped $HfV_2$.”, Journal of Applied Physics, 79 (1996), 6405–6407 | DOI

[3] Aoki K., Li X.G., Masumoto T., “Differential thermal analysis of hydrogen-induced amorphization in $C15$ laves phase $GdFe_2$”, Acta Metallurgica et Materialia, 40 (1992), 221–227 | DOI

[4] PresaP., Forker M.,. Cavalcante J.Th., Ayala A.P., “Spin and temperature dependence of the magnetic hyperfine field of ${}^111Cd$ in the rare earth-aluminum Laves phase compounds $RAl_2$.”, Journal of Magnetism and Magnetic Materials, 306 (2006), 292–297 | DOI | MR

[5] Tozoni J.R., Teles J., Auccaise R., Oliveira-Silva R., Rivera-Ascona C., Vidoto E.L.G., Guimaraes A.P., Oliveira I.S., Bonagamba T.J., “Multi-quantum echoes in $GdAl_2$ zero-field high-resolution $NMR$”, Journal of Magnetic Resonance, 212 (2011), 265–273 | DOI

[6] Sahariya J., Mund H.S., Ahuja B.L., “Electronic properties of the magnetocaloric compound $GdAl_2$: A Compton scattering study”, Journal of Physics and Chemistry of Solids, 72 (2011), 1515–1518 | DOI

[7] Williams D.S., ShandP.M., Pekarek T.M., Skomski R., Petkov V., Leslie- Pelecky D.L., “Magnetic transitions in disordered $GdAl_2$”, Physical Review B, 68 (2003), 214404 | DOI

[8] Xiong D.K., Li D., Liu W., Zhang Zh., “Magnetocaloric effect of $Gd(Fe_xAl{1-x})_2$ compounds.”, Physica B: Condensed Matter, 369 (2005), 273–277 | DOI

[9] Fu H., Hadimani R.L., MaZ., Wang M.X., Teng B.H., Jiles D.C., “Magnetocaloric effect in $GdCo_xAl_{2-x}$ system for $(0.15 \leq x \leq1)$ compositions”, Journal of Applied Physics, 115 (2014), 17A914 | DOI

[10] RibeiroP.O., Alho B.P., Alvarenga T.S.T., Nobrega E.P., Magnus A., Carvalho G., Sousa V.S.R., Caldas A., Oliveira N.A., RankeP.J., “Theoretical investigations on the magnetocaloric and barocaloric effects in $Tb_yGd_{1-y}Al_2$ series”, Journal of Alloys and Compounds, 563 (2013), 242–248 | DOI

[11] Sousa V.S.R., Silva L.E.L., Gomes A.M., RankeP.J., “Spin reorientations and crystal field modification in $Ho_{1-y}Gd_yAl_2$ compounds”, Journal of Alloys and Compounds, 686 (2016), 522–525 | DOI

[12] MaS., Li W.F., Li D., Xiong D.K., Sun N.K., Geng D.Y., Liu W., Zhang Z.D., “Large cryogenic magnetocaloric effect in the blocking state of $GdAl_2/Al_2O_3$ nanocapsules”, Physical Review B, 76 (2007), 144404 | DOI

[13] Paula V.G., Silva L.M., Santos A.O., Lang R., Otubo L., Coelho A.A., Cardoso L.P., “Magnetocaloric effect and evidence of superparamagnetism in $GdAl_2$ nanocrystallites: A magnetic-structural correlation”, Physical Review B, 93 (2006), 094427 | DOI

[14] Prusty M.M., Chelvane J.A., Nirmala R., “Magnetism and magnetocaloric effect of melt-spun, nanostructured $GdAl_2$”, Materials Research Express, 7 (2020), 064001 | DOI