Magnetocaloric effect
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 618-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

In recent years, natural gas has acquired an increasing geopolitical importance as a source of energy transported over long distances for consumption in many different sectors of the economy. However, modern technologies for the liquefaction of hydrocarbons are very complex and expensive. Taking into account the significant progress in the field of modern superconducting magnetic field sources, magnetic cooling is becoming an alternative to traditional vapor-gas cooling. In the cryogenic temperature range, the Laves phases are among the most effective materials with a magnetocaloric effect. This article is devoted to the study of the magnetocaloric effect in magnetic fields up to 3 T in DyAl$_2$. In these magnetic field the change of the magnetic entropy in this intermetallic compound is $\Delta S_m$ = -9.26 J/(kg$\cdot$K) and is achieved near the Curie temperature $T_C$ = 55 K.
Keywords: magnetocaloric effect, magnetic cooling, Laves phase, natural gas liquefaction, ferromagnet.
@article{CHFMJ_2020_5_4_a10,
     author = {S. V. Taskaev and V. V. Khovailo and K. P. Skokov and W. Liu and E. Bykov and M. N. Ulyanov and D. Bataev and A. A. Basharova and M. V. Kononova and D. V. Plakhotskiy and M. Yu. Bogush and M. A. Gavrilova and T. Gottschall and Z. Hu},
     title = {Magnetocaloric effect},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {618--626},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a10/}
}
TY  - JOUR
AU  - S. V. Taskaev
AU  - V. V. Khovailo
AU  - K. P. Skokov
AU  - W. Liu
AU  - E. Bykov
AU  - M. N. Ulyanov
AU  - D. Bataev
AU  - A. A. Basharova
AU  - M. V. Kononova
AU  - D. V. Plakhotskiy
AU  - M. Yu. Bogush
AU  - M. A. Gavrilova
AU  - T. Gottschall
AU  - Z. Hu
TI  - Magnetocaloric effect
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 618
EP  - 626
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a10/
LA  - en
ID  - CHFMJ_2020_5_4_a10
ER  - 
%0 Journal Article
%A S. V. Taskaev
%A V. V. Khovailo
%A K. P. Skokov
%A W. Liu
%A E. Bykov
%A M. N. Ulyanov
%A D. Bataev
%A A. A. Basharova
%A M. V. Kononova
%A D. V. Plakhotskiy
%A M. Yu. Bogush
%A M. A. Gavrilova
%A T. Gottschall
%A Z. Hu
%T Magnetocaloric effect
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 618-626
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a10/
%G en
%F CHFMJ_2020_5_4_a10
S. V. Taskaev; V. V. Khovailo; K. P. Skokov; W. Liu; E. Bykov; M. N. Ulyanov; D. Bataev; A. A. Basharova; M. V. Kononova; D. V. Plakhotskiy; M. Yu. Bogush; M. A. Gavrilova; T. Gottschall; Z. Hu. Magnetocaloric effect. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 4, pp. 618-626. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_4_a10/

[1] Franco V., Blázquez J.S., Ingale B., Conde A., “The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models”, Annual Review of Materials Research, 42 (2012), 305–342 | DOI

[2] Franco V., Blázquez J.S., Ipus J.J., LawJ.Y., Moreno-Ramirez L.M., Conde A., “Magnetocaloric effect: From materials research to refrigeration devices”, Progress in Material Science, 93 (2018), 112–232 | DOI

[3] Nereson N., Olsen C., Arnold G., “Magnetic Properties of $DyAl_2$ and $NdAl_2$”, Journal of Applied Physics, 37 (1966), 4575–4580 | DOI

[4] Lee E.W., Montenegro J.F.D., “The magnetization of $GdAl_2$”, Journal of Magnetism and Magnetic Materials, 22:3 (1981), 282–290 | DOI

[5] Khalaf K.A.M., “The low temperature specific heat of single crystal $Er-Al_2$ compound”, Journal of Magnetism and Magnetic Materials, 469 (2019), 178–182 | DOI

[6] Prusty M.M., Chelvane J.A., Nirmala R., “Magnetism and magnetocaloric effect of melt-spun, nanostructured $GdAl_2$”, Materials Research Express, 6 (2020), 064001 | DOI

[7] Purwins H.-G., Leson A., “Magnetic properties of (rare earth) $Al_2$ intermetallic compounds”, Advances in Physics, 39 (1990), 309–403 | DOI

[8] GschneidnerK.A., Pecharsky V.K., Malik S., “The $(Dy_{1-x}Er_x)Al_2$ alloys as active magnetic regenerators for magnetic refrigeration”, dvances in Cryogenic Engineering, 42 (1997), 475–483

[9] von RankeP.J., Pecharsky V.K., Gschneidner K.A., “Influence of the crystalline electrical field on the magnetocaloric effect of $DyAl_2, ErAl_2$, and $DyNi_2$”, Physical Review B, 58 (1998), 12110 | DOI

[10] von RankeP.J., deOliveira I.G., Guimaraes A.P., da Silva X.A., “Anomaly in the magnetocaloric effect in the intermetallic compound $DyAl_2$”, Physical Review B, 61 (2000), 447–450 | DOI

[11] von RankeP.J., de Oliveira N.A., Garcia D.C., de Sousa V.S.R., de Souza V.A., Carvalho A.M.G., Gama S., Reis M.S., “Magnetocaloric effect due to spin reorientation in the crystalline electrical field: Theory applied to $DyAl_2$”, Physical Review B, 75:18 (2007), 184420 | DOI

[12] von RankeP.J., de Oliveira N.A., Plaza E.J.R., de Sousa V.S.R., Alho B.P., Carvalho A.M.G., Gama S., Reis M.S., “The giant anisotropic magnetocaloric effect in $DyAl_2$”, Journal of Applied Physics, 104 (2008), 093906 | DOI

[13] Michalski R., Zygadlo J., “Simulated thermomagnetic properties of $DyAl_2$, $HoAl_2$ and $ErAl_2$ compounds in comparison with the results for $TbAl_2$, $GdAl_2$ and $SmAl_2$ calculated by ATOMIC MATTERS MFA Computation System”, International Journal of Magnetism and Electromagnetism, 5:1 (2019), 018

[14] Shelekhov E.V., Sviridova T.A., “Programs for x-ray analysis of polycrystals”, Metal Science and Heat Treatment, 42 (2000), 309–313 | DOI

[15] Fiorillo F, Measurement and Characterization of Magnetic Materials., Elsevier, Amsterdam, 2004, 554 pp.

[16] Morrish A.H., The Physical Principles of Magnetism, Wiley, New York, 1965, 275 pp.