Complex powers of multivalued linear operators with polynomially bounded $C$-resolvent
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 363-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct complex powers of multivalued linear operators with polynomially bounded $C$-resolvent existing on an appropriate region of the complex plane containing the interval $(-\infty,0].$ In our approach, the operator $C$ is not necessarily injective. We clarify the basic properties of introduced powers and analyze the abstract incomplete fractional differential inclusions associated with the use of modified Liuoville right-sided derivatives. We also consider abstract incomplete differential inclusions of second order, working in the general setting of sequentially complete locally convex spaces.
Keywords: complex power of a multivalued linear operator, $C$-resolvent set, abstract incomplete fractional differential inclusion, abstract incomplete differential inclusion of second order, locally convex space.
@article{CHFMJ_2020_5_3_a9,
     author = {M. Kosti\'c},
     title = {Complex powers of multivalued linear operators with polynomially bounded $C$-resolvent},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {363--385},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a9/}
}
TY  - JOUR
AU  - M. Kostić
TI  - Complex powers of multivalued linear operators with polynomially bounded $C$-resolvent
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 363
EP  - 385
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a9/
LA  - en
ID  - CHFMJ_2020_5_3_a9
ER  - 
%0 Journal Article
%A M. Kostić
%T Complex powers of multivalued linear operators with polynomially bounded $C$-resolvent
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 363-385
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a9/
%G en
%F CHFMJ_2020_5_3_a9
M. Kostić. Complex powers of multivalued linear operators with polynomially bounded $C$-resolvent. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 363-385. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a9/

[1] El Alaarabiou H., “Calcul fonctionnel et puissance fractionnaire d' opérateurs linéaries multivoques non négatifs”, Comptes Rendus de l'Académie des Sciences. Series I. Mathematics, 313 (1991), 163–166 | MR | Zbl

[2] El Alaarabiou H., Calcul fonctionnel et puissance fractionnaire d' opérateurs linéaries multivoques non négatifs, Pub. Math. Besançon, An. non linéaire, 13, 1991 | MR

[3] Martínez C., Sanz M., Pastor J., “A functional calculus and fractional powers for multivalued linear operators”, Osaka Journal of Mathematics, 37 (2000), 551–576 | MR | Zbl

[4] Pastor J., “On uniqueness of fractional powers of multi-valued linear operators and the incomplete Cauchy problem”, Annali di Matematica Pura ed Applicata, 191 (2012), 167–180 | DOI | MR | Zbl

[5] Yagi A., “Generation theorem of semigroup for multivalued linear operators”, Osaka Journal of Mathematics, 28 (1991), 385–410 | MR | Zbl

[6] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Chapman and Hall/CRC Pure and Applied Mathematics Publ., New York, 1998, 312 pp. | MR

[7] Fedorov V.E., “Infinitely differentiable semigroups of operators with kernel”, Siberian Mathematical Journal, 40 (1999), 1199–1210 | DOI | MR | Zbl

[8] Fedorov V.E., “Weak solutions of linear equations of Sobolev type and semigroups of operators”, Izvestiya: Mathematics, 67 (2003), 797–813 | DOI | MR | Zbl

[9] Favaron A., Favini A., “Fractional powers and interpolation theory for multivalued linear operators and applications to degenerate differential equations”, Tsukuba Journal of Mathematics, 35 (2011), 259–323 | DOI | MR | Zbl

[10] Balakrishnan A.V., “Fractional powers of closed operators and the semigroups generated by them”, Pacific Journal of Mathematics, 10 (1960), 419–437 | DOI | MR | Zbl

[11] Komatsu H., “Fractional powers of operators”, Pacific Journal of Mathematics, 19 (1966), 285–346 | DOI | MR | Zbl

[12] Periago F., Straub B., “A functional calculus for almost sectorial operators and applications to abstract evolution equations”, Journal of Evolution Equations, 2 (2002), 41–68 | DOI | MR | Zbl

[13] Martinez C., Sanz M., Redondo A., “Fractional powers of almost non-negative operators”, Fractional Calculus and Applied Analysis, 8 (2005), 201–230 | MR | Zbl

[14] Chen C., Kostić M., Li M., “Complex powers of almost $C$-nonnegative operators”, Contemporary Analysis and Applied Mathematics, 2 (2014), 1–77 | MR

[15] Chen C., Kostić M., Li M., Žigić M., “Complex powers of $C$-sectorial operators. Part I”, Taiwanese Journal of Mathematics, 17 (2013), 465–499 | DOI | MR | Zbl

[16] Kostić M., “Complex powers of non-densely defined operators”, Publ. Inst. Math., Nouv. Sér., 90 (2011), 47–64 | DOI | MR | Zbl

[17] Straub B., “Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them”, Hiroshima Mathematical Journal, 24 (1994), 529–548 | DOI | MR | Zbl

[18] deLaubenfels R., Yao F., Wang S.W., “Fractional powers of operators of regularized type”, Journal of Mathematical Analysis and Applications, 199:3 (1996), 910–933 | DOI | MR | Zbl

[19] Kostić M., “Abstract degenerate incomplete Cauchy problems”, Tsukuba Journal of Mathematics, 40 (2016), 29–53 | DOI | MR | Zbl

[20] M. Kostić, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press/Science Publishers, Boca Raton–New York, 2015, 484 pp. | MR

[21] Meise R., Vogt D., Introduction to Functional Analysis, Clarendon Press, New York, 1997, 448 pp. | MR | Zbl

[22] Martinez C., Sanz M., The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, no. 187, Elseiver, Amsterdam, 2001, 378 pp. | MR | Zbl

[23] Xiao T.-J., Liang J., The Cauchy Problem for Higher–Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998 | MR | Zbl

[24] Kostić M., Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute SANU, Belgrade, 2020 | MR

[25] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, no. 96, Birkhäuser/Springer Basel AG, Basel, 2001, xii+539 pp. | MR | Zbl

[26] R. W. Carroll, R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press Publ., New York, 1976 | MR

[27] I. V. Melnikova, A. I. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC Publ., Boca Raton, 2001 | MR | Zbl

[28] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations And Systems Not Solvable With Respect To The Highest-Order Derivative, Pure and Applied Mathematics, Marcel Dekker, Inc., New York–Basel, 2003, 490 pp. | MR | Zbl

[29] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR | Zbl

[30] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser-Verlag Publ., Basel, 1993, xxvi+366 pp. | MR | Zbl

[31] S. G. Samko, A. A. Kilbas, O. I. Marichev O.I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993 | MR | Zbl

[32] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999, xxiii+340 pp. | MR | Zbl

[33] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, PhD Thesis, Eindhoven University of Technology, Eindhoven, 2001, 107 pp. | MR

[34] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010, 166 pp. | MR | Zbl

[35] Kostić M., Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011 | MR | Zbl

[36] A. A. Kilbas, H. M. Srivastava , J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006, 540 pp. | MR | Zbl

[37] Cross R., Multivalued Linear Operators, Marcel Dekker, Inc., New York, 1998, 352 pp. | MR | Zbl

[38] Kostić M., “Degenerate $K$-convoluted $C$-semigroups and degenerate $K$-convoluted $C$-cosine functions in locally convex spaces”, Chelyabinsk Physical and Mathematical Journal, 3 (2018), 90–110 | MR

[39] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 2000, xxi+589 pp. | MR | Zbl

[40] Arendt W., Favini A., “Integrated solutions to implicit differential equations”, Rendiconti del Seminario Matematico Universita e Politecnico di Torino, 51 (1993), 315–329 | MR | Zbl

[41] Arendt W., El-Mennaoui O., Keyantuo V.V., “Local integrated semigroups: evolution with jumps of regularity”, Journal of Mathematical Analysis and Applications, 186 (1994), 572–595 | DOI | MR | Zbl