Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_3_a8, author = {A. A. Akimova}, title = {Generalizations of the {Kauffman} polynomial for knots in the thickened surface of genus 2}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {352--362}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a8/} }
TY - JOUR AU - A. A. Akimova TI - Generalizations of the Kauffman polynomial for knots in the thickened surface of genus 2 JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 352 EP - 362 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a8/ LA - en ID - CHFMJ_2020_5_3_a8 ER -
A. A. Akimova. Generalizations of the Kauffman polynomial for knots in the thickened surface of genus 2. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 352-362. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a8/
[1] Kauffman L.H., “State models and the Jones Polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR | Zbl
[2] Jones V.F.R., “A polynomial invariant for knots via von Neumann Algebra”, Bulletin of the American Mathematical Society, 12:1 (1985), 103–111 | DOI | MR | Zbl
[3] Bourgoin M.O., Twisted Link Theory, 10.08.2006, arXiv: math/0608233v1 [math.GT] | MR | Zbl
[4] Kauffman L.H., An Extended Bracket Polynomial for Virtual Knots and Links, 15.12.2007, arXiv: 0712.2546 [math.GT] | MR | Zbl
[5] Gabrovšek B., Mroczkowski M., “Knots in the solid torus up to 6 crossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 43 | MR | Zbl
[6] Akimova A.A., Matveev S.V., “Classification of genus 1 virtual knots having at most five classical crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031 | DOI | MR | Zbl
[7] Matveev S.V., Nabeeva L.R., “Tabulating knots in the thickened Klein Bottle”, Siberian Mathematical Journal, 57:3 (2016), 542–548 | DOI | MR | Zbl
[8] Gabrovšek B., “Tabulation of prime knots in lens spaces”, Mediterranean Journal of Mathematics, 14:2 (2017), 88 | DOI | Zbl