Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_3_a5, author = {A. V. Panov}, title = {A differential invariant solution of two-phase fluid dynamics equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {316--326}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/} }
A. V. Panov. A differential invariant solution of two-phase fluid dynamics equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 316-326. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/
[1] Rakhmatulin Kh.A., “Fundamentals of gasdynamics of interpenetrating motions of compressible media”, Applied mathematics and mechanics, 20:2 (1956), 184–195 (In Russ.) | MR
[2] Yanenko N.N., Soloukhin R.I., Papyrin A.N., Fomin V.M., Supersonic two-phase flows under conditions of nonequilibrium of the velocities of the particles, Nauka Publ., Novosibirsk, 1980, 160 pp. (In Russ.)
[3] Fedorov A.V., Fomin P.A., Fomin V.M., Tropin D.A., Chen J.-R., Physical and mathematical modeling of detonation quenching with clouds of fine particles, Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 2011, 156 pp. (In Russ.)
[4] Stoyanovskaya O.P., Snytnikov V.N., Vorobyov E.I., “Analysis of numerical algorithms for computing rapid momentum transfers between the gas and dust in simulations of circumstellar disks”, Astronomy reports, 62:7 (2018), 455–468 | DOI
[5] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982, 432 pp. | MR | Zbl
[6] Bocharov A.I., Verbovetskii A.M., Vinogradov A.M. et al., Symmetry and conservation laws of the equations of mathematical physics, Factorial Press Publ., Moscow, 2005, 380 pp. (In Russ.)
[7] Olver P.J., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986, 639 pp. | MR | Zbl
[8] G. Bluman, S. Anco, Symmetry and Intergration Methods for Differential Equations, Springer-Verlag, New York, 2002, 419 pp. | MR
[9] Fedorov V.E., Panov A.V., “Invariant and partially invariant solutions of the system of equations of a two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 38, 65–69 (In Russ.)
[10] A. V. Panov, “Invariant solutions and submodels in two-phase fluid mechanics generated by 3-dimensional subalgebras: barochronous flows”, International Journal of Non-Linear Mechanics, 116 (2019), 140–146 | DOI
[11] Classification of differential invariant submodels, “Khabirov S.V.”, Siberian Mathematical Journal, 45 (2004), 562–579 | DOI | MR | Zbl
[12] Panov A.V., “Exact solutions of the equations of two-phase dynamics. Collapse of gas and particles in space”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 263–273 | DOI | MR | Zbl
[13] Khabirov S.V., Symmetry analysis of an incomressible fluid model with viscosity and heat conductivity that depends on temperature, Gilem Publ., Ufa, 2004 (In Russ.)
[14] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen. I. Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977, xxvi+670 pp. | MR | Zbl