A differential invariant solution of two-phase fluid dynamics equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 316-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of differential equations, which describes the dynamics of a gas suspension in an isothermal case is considered. It is derived the submodel of homogeneous medium movements, which are invariant with respect to Galilean shifts at the first coordinate. This submodel is a differentially invariant submodel with respect to a four-dimensional subalgebra with a basis of shift operators over all spatial coordinates and a Galilean transformation operator over the first coordinate. This submodel has been led to an involution and integrated. An exact solution of the system is found. A comparison of the solution with a known partially invariant solution is done. A group bundle of the system is constructed with respect to the subalgebra from the optimal system of subalgebras of the Lie algebra of the symmetry group for the system of two-phase fluid dynamics. This group bundle divides the system into two parts: automorphic and resolution. All solutions of the system are contained in the set of solutions of the group bundle and vice versa.
Keywords: symmetry group, differential invariant solution, two-phase fluid.
@article{CHFMJ_2020_5_3_a5,
     author = {A. V. Panov},
     title = {A differential invariant solution of two-phase fluid dynamics equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {316--326},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/}
}
TY  - JOUR
AU  - A. V. Panov
TI  - A differential invariant solution of two-phase fluid dynamics equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 316
EP  - 326
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/
LA  - ru
ID  - CHFMJ_2020_5_3_a5
ER  - 
%0 Journal Article
%A A. V. Panov
%T A differential invariant solution of two-phase fluid dynamics equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 316-326
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/
%G ru
%F CHFMJ_2020_5_3_a5
A. V. Panov. A differential invariant solution of two-phase fluid dynamics equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 316-326. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a5/

[1] Rakhmatulin Kh.A., “Fundamentals of gasdynamics of interpenetrating motions of compressible media”, Applied mathematics and mechanics, 20:2 (1956), 184–195 (In Russ.) | MR

[2] Yanenko N.N., Soloukhin R.I., Papyrin A.N., Fomin V.M., Supersonic two-phase flows under conditions of nonequilibrium of the velocities of the particles, Nauka Publ., Novosibirsk, 1980, 160 pp. (In Russ.)

[3] Fedorov A.V., Fomin P.A., Fomin V.M., Tropin D.A., Chen J.-R., Physical and mathematical modeling of detonation quenching with clouds of fine particles, Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, 2011, 156 pp. (In Russ.)

[4] Stoyanovskaya O.P., Snytnikov V.N., Vorobyov E.I., “Analysis of numerical algorithms for computing rapid momentum transfers between the gas and dust in simulations of circumstellar disks”, Astronomy reports, 62:7 (2018), 455–468 | DOI

[5] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982, 432 pp. | MR | Zbl

[6] Bocharov A.I., Verbovetskii A.M., Vinogradov A.M. et al., Symmetry and conservation laws of the equations of mathematical physics, Factorial Press Publ., Moscow, 2005, 380 pp. (In Russ.)

[7] Olver P.J., Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986, 639 pp. | MR | Zbl

[8] G. Bluman, S. Anco, Symmetry and Intergration Methods for Differential Equations, Springer-Verlag, New York, 2002, 419 pp. | MR

[9] Fedorov V.E., Panov A.V., “Invariant and partially invariant solutions of the system of equations of a two-phase medium mechanics”, Bulletin of Chelyabinsk State University, 2011, no. 38, 65–69 (In Russ.)

[10] A. V. Panov, “Invariant solutions and submodels in two-phase fluid mechanics generated by 3-dimensional subalgebras: barochronous flows”, International Journal of Non-Linear Mechanics, 116 (2019), 140–146 | DOI

[11] Classification of differential invariant submodels, “Khabirov S.V.”, Siberian Mathematical Journal, 45 (2004), 562–579 | DOI | MR | Zbl

[12] Panov A.V., “Exact solutions of the equations of two-phase dynamics. Collapse of gas and particles in space”, Journal of Applied and Industrial Mathematics, 11:2 (2017), 263–273 | DOI | MR | Zbl

[13] Khabirov S.V., Symmetry analysis of an incomressible fluid model with viscosity and heat conductivity that depends on temperature, Gilem Publ., Ufa, 2004 (In Russ.)

[14] Kamke E., Differentialgleichungen: Losungsmethoden und Losungen. I. Gewohnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977, xxvi+670 pp. | MR | Zbl