Boundedness of operators with partial integrals with the mixed norm. II
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 293-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general form of a linear integral operator with partial integrals in $\mathbb{R}_3$ is considered as the sum of eight integral expressions, including partial integrals for one and two variables. The action of the specified operator is studied within the space $C(\Omega_1;L_{p}(\Omega_2))$ of continuous functions on $\overline{\Omega_1}$ with values in the Lebesgue class $L_p (\Omega_2)$, $1$, where $\Omega_1\times\Omega_2=D$ is the the finite parallelepiped in $\mathbb{R}_3$. We prove that the considered operators belong to the class of linear bounded operators from the anisotropic class of Lebesgue functions $L_{p,p^2}$ to the class of functions with the mixed norm $C (\Omega_1;L_{p}(\Omega_2))$.
Keywords: function with values in a Banach space, partial integral, linear operator with partial integrals, anisotropic classes of Lebesgue functions.
@article{CHFMJ_2020_5_3_a3,
     author = {L. N. Lyakhov and N. I. Trusova},
     title = {Boundedness of operators with partial integrals with the mixed norm. {II}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {293--305},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a3/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - N. I. Trusova
TI  - Boundedness of operators with partial integrals with the mixed norm. II
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 293
EP  - 305
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a3/
LA  - ru
ID  - CHFMJ_2020_5_3_a3
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A N. I. Trusova
%T Boundedness of operators with partial integrals with the mixed norm. II
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 293-305
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a3/
%G ru
%F CHFMJ_2020_5_3_a3
L. N. Lyakhov; N. I. Trusova. Boundedness of operators with partial integrals with the mixed norm. II. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 3, pp. 293-305. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_3_a3/

[1] J. M. Appell, A. S. Kalitvin, P. P. Zabrejko, Partial Integral Operators and Integro-Differential Equations, Marcel Dekker, New York, 2000, 560 pp. | MR | Zbl

[2] Kalitvin A.S., Frolova E.V., Linear equations with partial integrals. C-theory, Lipetsk State Pedagogical University, Lipetsk, 2004, 195 pp. (In Russ.)

[3] Lyakhov L.N., Inozemtsev A.I., “Partial integrals in anisotropic Lebesgue spaces. II: Multidimensional case”, Journal of Mathematical Sciences, 247:6 (2020), 893–900 (In Russ.)

[4] Lyakhov L.N., Trusova N.I., “Boundedness of operators with partial integrals with the mixed norm. I.”, Chlyabinsk Physical and Mathematical Journal, 5:1 (2020), 22–31 (In Russ.) | MR

[5] V. Romanovskij, “Sur une class d'équations intégrales linéaires”, Acta Mathematica, 59 (1932), 99–208 | DOI | MR

[6] Romanovsky V.I., Selected works, v. 2, Theory of probabilities, statistics and analysis, Nauka Publ., Tashkent, 1964, 390 pp. (In Russ.)

[7] Lions J.L., Some methods for solving nonlinear boundary value problems, Mir, Moscow, 1972, 587 pp. | MR