Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_2_a9, author = {A. M. Aliev and A. B. Batdalov and V. V. Koledov and V. G. Shavrov and B. Hernando}, title = {Magnetocaloric effect in {Ni}$_{50.3}${Mn}$_{36.5}${Sn}$_{13.2}$ ribbon {Heusler} alloy in cyclic magnetic fields}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {186--193}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a9/} }
TY - JOUR AU - A. M. Aliev AU - A. B. Batdalov AU - V. V. Koledov AU - V. G. Shavrov AU - B. Hernando TI - Magnetocaloric effect in Ni$_{50.3}$Mn$_{36.5}$Sn$_{13.2}$ ribbon Heusler alloy in cyclic magnetic fields JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 186 EP - 193 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a9/ LA - en ID - CHFMJ_2020_5_2_a9 ER -
%0 Journal Article %A A. M. Aliev %A A. B. Batdalov %A V. V. Koledov %A V. G. Shavrov %A B. Hernando %T Magnetocaloric effect in Ni$_{50.3}$Mn$_{36.5}$Sn$_{13.2}$ ribbon Heusler alloy in cyclic magnetic fields %J Čelâbinskij fiziko-matematičeskij žurnal %D 2020 %P 186-193 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a9/ %G en %F CHFMJ_2020_5_2_a9
A. M. Aliev; A. B. Batdalov; V. V. Koledov; V. G. Shavrov; B. Hernando. Magnetocaloric effect in Ni$_{50.3}$Mn$_{36.5}$Sn$_{13.2}$ ribbon Heusler alloy in cyclic magnetic fields. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 186-193. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a9/
[1] Pecharsky V.K., Jr Gschneidner K.A., Mudryk Y., Paudyal D., “Making the most of the magnetic and lattice entropy changes”, Journal of Magnetism and Magnetic Materials, 321 (2009), 3541–3547
[2] Liu J., Gottschall T., Skokov K.P., Moore J.D., Gutfleisch O., “Giant magnetocaloric effect driven by structural transitions”, Nature Materials, 11 (2012), 620–626
[3] Silva D.J., Bordalo B.D., Pereira A.M., Ventura J., Araújo J.P., “Solid state magnetic refrigerator”, Applied Energy, 93 (2012), 570–574
[4] Aliev A., Batdalov A., Bosko S., Buchelnikov V., Dikshtein I., Khovailo V., Koledov V., Levitin R., Shavrov V., Takagi T., “Magnetocaloric effect and magnetization in a Ni–Mn–Ga Heusler alloy in the vicinity of magnetostructural transition”, Journal of Magnetism and Magnetic Materials, 272–276 (2004), 2040–2042
[5] Sharma V.K., Chattopadhyay M.K., Kumar R., Ganguli T., Tiwari P., Roy S.B., “Magnetocaloric effect in Heusler alloys Ni$_{50}$Mn$_{34}$In$_{16}$ and Ni$_{50}$Mn$_{34}$Sn$_{16}$”, Journal of Physics: Condensed Matter, 19 (2007), 496207
[6] Nayak A.K., Sureshand K.G. Nigam A.K., “Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys”, Journal of Physics D: Applied Physics, 42 (2009), 035009
[7] Basso V., Sasso C.P., Skokov K.P., Gutfleisch O., Khovaylo V.V., “Hysteresis and magnetocaloric effect at the magnetostructural phase transition of Ni-Mn-Ga and Ni-Mn-Co-Sn Heusler alloys”, Physical Review B, 85 (2012), 014430
[8] Hernando B., Sánchez-Llamazares J.L., Santos J.D., Escoda Ll., Suñol J.J., Varga R., Baldomir D., Serantes D., “Thermal and magnetic field-induced martensite-austenite transition in Ni$_{50.3}$Mn$_{35.3}$Sn$_{14.4}$ ribbons”, Applied Physics Letters, 92 (2008), 042504
[9] Santos J.D., Sanchez T., Alvarez P., Sanchez M.L., Sánchez-Llamazares J.L., Hernando B., Escoda Ll., Suñol J.J., Varga R., “Microstructure and magnetic properties of Ni$_{50}$Mn$_{37}$Sn$_{13}$ Heusler alloy ribbons”, Journal of Applied Physics, 103 (2009), 07B326
[10] Guan W., Liu Q.R., Gao B., Yang S., Wang Y., “Large magnetocaloric effect at low magnetic field in Ni$_{50-x}$Co$_{x}$Mn$_{35}$In$_{15}$ ribbons”, Journal of Applied Physics, 109 (2011), 07A903
[11] Sánchez-Llamazares J.L., Flores-Zuniga H., Sanchez-Valdes C., Ross C.A., Garcia C., “Refrigerant capacity of austenite in as-quenched and annealed Ni$_{51.1}$Mn$_{31.2}$In$_{17.7}$ melt spun ribbons”, Journal of Applied Physics, 111 (2012), 07A932
[12] de Campos A., Rocco D.L., Carvalho A.M.G., Caron L., Coelho A.A., Gama S., da Silva L.M., Gandra F.C.G., Santos A.O., Cardoso L.P., Ranke P.J., Oliveira N.A., “Ambient pressure colossal magnetocaloric effect tuned by composition in Mn$_{1-x}$Fe$_{x}$As”, Nature Materials, 5 (2006), 802–804
[13] von Ranke P.J., Gama S., Coelho A.A., Campos A., Carvalho A.M.G., Gandra F.C.G., Oliveira N.A., “Theoretical description of the colossal entropic magnetocaloric effect: Application to MnAs”, Physical Review B, 73 (2006), 014415
[14] Rocco D.L., Campos A., Carvalho A.M.G., Caron L., Coelho A.A., Gama S., Gandra F.C.G., Santos A.O., Cardoso L.P., Ranke P.J., Oliveira N.A., “Ambient pressure colossal magnetocaloric effect in Mn$_{1-x}$Cu$_{x}$As compounds”, Applied Physics Letters, 90 (2007), 242507
[15] Bratko M., Morrison K., Campos A., Gama S., Cohen L.F., Sandeman K.G., “History dependence of directly observed magnetocaloric effects in (Mn, Fe)As”, Applied Physics Letters, 100 (2012), 252409
[16] Aliev A.M., Batdalov A.B., Kamilov I.K., Koledov V.V., Shavrov V.G., Buchelnikov V.D., Garcia J., Prida V.M., Hernando B., “Magnetocaloric effect in ribbon samples of Heusler alloys Ni–Mn–M (M=In, Sn)”, Applied Physics Letters, 97 (2010), 212505
[17] Aliev A.M., Gamzatov A.G., Batdalov A.B., Kalitka V.S., Kaul A.R., “Direct and inverse magnetocaloric effects in A-site ordered PrBaMn$_2$O$_6$ manganite”, Journal of Alloys and Compounds, 509 (2011), L1–L3
[18] Aliev A.M., Gamzatov A.G., Kalitka V.S., Kaul A.R., “Low field magnetocaloric effect and heat capacity of A-site ordered NdBaMn$_2$O$_6$ manganite”, Solid State Communications, 151 (2011), 1820–1823
[19] Aliev A.M., Gamzatov A.G., Kamilov K.I., Kaul A.R., Babushkina N.A., “Magnetocaloric properties of La$_{0.7}$Ca$_{0.3}$Mn$^{16}$O$_{3}$ and La$_{0.7}$Ca$_{0.3}$Mn$^{18}$O$_{3}$ manganites and their “sandwich””, Applied Physics Letters, 101 (2012), 172401
[20] Caballero-Flores R., Franco V., Conde A., Kiss L.F., “Influence of the demagnetizing field on the determination of the magnetocaloric effect from magnetization curves”, Journal of Applied Physics, 105 (2009), 07A919
[21] Khovaylo V.V., Skokov K.P., Gutfleisch O., Miki H., Kainuma R., Kanomata T., “Reversibility and irreversibility of magnetocaloric effect in a metamagnetic shape memory alloy under cyclic action of a magnetic field”, Applied Physics Letters, 97 (2010), 052503
[22] Booth R.A., Majetich S.A., “The magnetocaloric effect in thermally cycled polycrystalline Ni-Mn-Ga”, Journal of Applied Physics, 111 (2012), 07A933
[23] Çakir Ö., Acet M., “Neutron diffraction study of the magnetic-field-induced transition in Mn$_3$GaC”, Applied Physics Letters, 100 (2012), 202404
[24] Skokov K.P., Khovaylo V.V., Müller K.-H., Moore J.D., Liu J., Gutfleisch O., “Magnetocaloric materials with first-order phase transition: thermal and magnetic hysteresis in LaFe$_{11.8}$Si$_{1.2}$ and Ni$_{2.21}$Mn$_{0.77}$Ga$_{1.02}$.”, Journal of Applied Physics, 111 (2012), 07A910
[25] Feng Y., Lee Y.-H., Fukuda T., Kakeshita T., “Time dependent nature of first order magnetostructural transition in FeRh”, Journal of Alloys and Compounds, 538 (2012), 5–7
[26] Gamzatov A.G., Aliev A.M., Ghotbi Varzaneh A., Kameli P, Sarsari I.A., YuFeng S.C., “Inverse-direct magnetocaloric effect crossover in Ni$_{47}$Mn$_{40}$Sn$_{12.5}$Cu$_{0.5}$ Heusler alloy in cyclic magnetic fields”, Applied Physics Letters, 113 (2018), 172406