Theoretical investigation of a three-dimensional phase consisting of binary diamond-like layers
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 150-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigation of the structure and properties of a novel layered carbon phase, consisting of binary diamond-like DL${}_{6}$ layers, was performed by the density functional theory method. As a result of the calculation, it was established that the crystal lattice of this phase belongs to the space group P6${}_{3}$/mmc (No. 194). The packing of diamond-like layers in the DL${}_{6}$ P6${}_{3}$/mmc phase structure is similar to the AB-packing of graphene layers in hexagonal graphite. The hexagonal unit cell has the following parameters: $a$ = $b$ = 0.2738 nm, $c$ = 0.9723 nm, $Z$ = 8. The calculated values of the DL${}_{6}$ P6${}_{3}$/mmc phase density and cohesion energy are 2.529 g/cm${}^{3}$ and 6.65 eV/atom, respectively. The calculation of the electronic structure showed that the new phase should be a semiconductor with an indirect band gap of 1.5 eV. Also, the bulk modulus, which amounted to 261 GPa, was calculated. The maximum Young moduli (784-843 GPa) of the DL${}_{6}$ P6${}_{3}$/mmc phase are observed along crystallographic directions in the plane of the layers, while Young's modulus perpendicular to the layers is an order of magnitude smaller (40 GPa). As a result of molecular-dynamic modeling, it was found that the structure of the new phase should be stable up to 260 K at normal pressure. In addition, the powder X-ray pattern of the DL${}_{6}$ P6${}_{3}$/mmc phase was calculated for its experimental identification in synthesized carbon materials.
Keywords: diamond, polymorphism, atomic structure, electronic properties, powder X-ray pattern, modeling.
@article{CHFMJ_2020_5_2_a6,
     author = {V. A. Greshnyakov and E. A. Belenkov},
     title = {Theoretical investigation of a three-dimensional phase consisting of binary diamond-like layers},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {150--160},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a6/}
}
TY  - JOUR
AU  - V. A. Greshnyakov
AU  - E. A. Belenkov
TI  - Theoretical investigation of a three-dimensional phase consisting of binary diamond-like layers
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 150
EP  - 160
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a6/
LA  - ru
ID  - CHFMJ_2020_5_2_a6
ER  - 
%0 Journal Article
%A V. A. Greshnyakov
%A E. A. Belenkov
%T Theoretical investigation of a three-dimensional phase consisting of binary diamond-like layers
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 150-160
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a6/
%G ru
%F CHFMJ_2020_5_2_a6
V. A. Greshnyakov; E. A. Belenkov. Theoretical investigation of a three-dimensional phase consisting of binary diamond-like layers. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 150-160. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a6/

[1] Shulepov S.V., Physics of carbon materials, Metallurgiya Publ. Chelyabinsk Branch, Chelyabinsk, 1990, 336 pp. (In Russ.)

[2] H. O. Pierson, Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Application, Noyes, Park Ridge, New Jersey, 1993, 402 pp.

[3] E. A. Belenkov, V. A. Greshnyakov, “Classification schemes for carbon phases and nanostructures”, New Carbon Materials, 28 (2013), 273–282

[4] Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, ed. L. Day, Elsevier, Amsterdam, Oxford , 2006

[5] Handbook of Graphene Set, I–VIII, ed. E. Celasco, A. N. Chaika, T. Stauber, M. Zhang, C. Ozkan, C. Ozkan, U. Ozkan, B. Palys, S. W. Harun, Wiley Scrivener Publishing LLC, Hoboken, 2019

[6] V. A. Greshnyakov, E. A. Belenkov, “Atomic structure and electronic properties of binary graphane: Ab initio calculations ”, IOP Conference Series: Materials Science and Engineering, 537 (2019), 022056

[7] M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, K. P. Katin, “Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes”, Fullerenes Nanotubes and Carbon Nanostructures, 28 (2020), 97–103 | MR

[8] P. Giannozzi, O. Andreussi, T. Brumme et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO”, Journal of Physics: Condensed Matter, 29 (2017), 465901

[9] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple”, Physical Review Letters, 77 (1996), 3865–3868

[10] N. Troullier, J. L. Martins, “Efficient pseudopotentials for plane-wave calculations”, Physical Review B., 43 (1991), 1993–2006

[11] Belenkov E.A., Greshnyakov V.A., “Classification of structural modifications of carbon”, Physics of the Solid State, 55:8 (2013), 1754–1764

[12] Belenkov E.A., Greshnyakov V.A., “Diamond-like phases formed from fullerene-like clusters”, Physics of the Solid State, 57:11 (2015), 2331–2341

[13] H. T. Stokes, D. M. Hatch, “Program for identifying the space group symmetry of a crystal”, Journal of Applied Crystallography, 38 (2005), 237–238

[14] M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics, Springer, Berlin, Heidelberg, 2007, 470 pp. | MR | Zbl

[15] Greshnyakov V.A., Belenkov E.A., “Technique for calculating the bulk modulus”, Russian Physics Journal, 57:6 (2014), 731–737

[16] Umanskii Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N., Crystallography, X-ray Diffraction and electron microscopy, Metallurgiya Publ., Moscow, 1982, 632 pp. (In Russ.)

[17] Greshnyakov V.A., Belenkov E.A., “Calculation of the physicochemical characteristics of a new orthorhombic form of diamond”, Inorganic Materials, 54:2 (2018), 111–116 | MR

[18] E. A. Belenkov, V. A. Greshnyakov, “Structures and properties of diamond-like phases derived from carbon nanotubes and three-dimensional graphites”, Journal of Materials Science, 50:23 (2015), 7627–7635

[19] Lisovenko D.S., Baimova Y.A., Rysaeva L.Kh. et al., “Equilibrium structures of carbon diamond-like clusters and their elastic properties”, Physics of the Solid State, 59:4 (2017), 820–828

[20] L. Kh. Rysaeva, J. A. Baimova, S. V. Dmitriev et al., “Elastic properties of diamond-like phases based on carbon nanotubes”, Diamond Related Materials, 97 (2019), 107411

[21] L. Kh. Rysaeva, D. S. Lisovenko, V. A. Gorodtsov et al., “Stability, elastic properties and deformation behavior of graphene-based diamond-like phases”, Computational Materials Science, 172 (2019), 109355

[22] C. Kittel, Introduction to Solid States Physics, Wiley, New York, 1996, 673 pp. | MR

[23] Belenkov E.A., Greshnyakov V.A., “Structural varieties of polytypes”, Physics of the Solid State, 59:10 (2017), 1926–1933

[24] Y. Gao, T. Cao, F. Cellini et al., “Ultrahard carbon film from epitaxial two-layer graphene”, Nature Nanotechnology, 13 (2018), 133–138