Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_2_a5, author = {A. A. Amirov and I. I. Makoed and D. M. Yusupov}, title = {Multicaloric effect in bismuth ferrite}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {140--149}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a5/} }
TY - JOUR AU - A. A. Amirov AU - I. I. Makoed AU - D. M. Yusupov TI - Multicaloric effect in bismuth ferrite JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 140 EP - 149 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a5/ LA - ru ID - CHFMJ_2020_5_2_a5 ER -
A. A. Amirov; I. I. Makoed; D. M. Yusupov. Multicaloric effect in bismuth ferrite. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 140-149. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a5/
[1] A. M. Tishin, Y. I. Spichkin, The Magnetocaloric Effect and its Applications, Institute of Physics Publishing, Philadelphia, 2003, 476 pp.
[2] A. Chauhan, S. Patel, R. Vaish, C. R. Bowen, “A review and analysis of the elastocaloric effect for solid-state refrigeration”, MRS Energy Sustainability, 2 (2015), E16
[3] G. Suchaneck, O. V. Pakhomov, G. Gerlach, Electrocaloric Cooling, Refrigeration, ed. O. Ekren, IntechOpen Limited, London, 2017
[4] L. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J. L. Tamarit, S. Aksoy, M. Acet, “Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy”, Nature Materials, 9 (2010), 478–481
[5] A. Starkov, I. Starkov, “Multicaloric effect in a solid: new aspects”, Journal of Experimental and Theoretical Physics, 119 (2014), 258–263
[6] M. M. Vopson, “The multicaloric effect in multiferroic materials”, Solid State Communications, 152 (2012), 2067–-2070
[7] A. A. Amirov, I. I. Makoed, Y. A. Chaudhari, S. T. Bendre, D. M. Yusupov, A. Sh. Asvarov, N. A. Liedienov, A. V. Pashchenko, “Magnetocaloric effect in BiFe$_{1-x}$Zn$_{x}$O$_3$ multiferroics”, Journal of Superconductivity and Novel Magnetism, 31 (2018), 3283–3288
[8] B. Ramachandran, R. M. S. Ramachandra , “Low temperature magnetocaloric effect in polycrystalline BiFeO$_3$ ceramics”, Applied Physics Letters, 95:14 (2009), 142505 | MR
[9] G.-P. Zheng, S. Uddin, X. Zheng, J. Yang, “Structural and electrocaloric properties of multiferroic-BiFeO$_3$ doped 0.94Bi$_{0.5}$Na$_{0.5}$TiO$_{3}-0.06$BaTiO$_3$ solid solutions”, Journal of Alloys and Compounds, 663 (2016), 249–255
[10] I. I. Makoed, A. A. Amirov, N. A. Liedienov, A. V. Pashchenko, K. I. Yanushkevich, “Predicted model of magnetocaloric effect in BiFeO$_3$-based multiferroics”, Solid State Sciences, 95 (2019), 105920
[11] M. A. Hamad, “Theoretical work on magnetocaloric effect in La$_{0.75}$Ca$_{0.25}$MnO$_{3}$”, Journal of Advanced Ceramics, 1 (2012), 290–295
[12] H. Liu, X. Yang, “Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields”, AIP Advances, 5 (2015), 117134