Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_2_a2, author = {P. D. Lebedev and A. A. Uspenskii and V. N. Ushakov}, title = {Algorithms of minimization of {Hausdorff} deviation of a convex compact from a set of movable convex polygons}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {218--232}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a2/} }
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii AU - V. N. Ushakov TI - Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 218 EP - 232 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a2/ LA - ru ID - CHFMJ_2020_5_2_a2 ER -
%0 Journal Article %A P. D. Lebedev %A A. A. Uspenskii %A V. N. Ushakov %T Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons %J Čelâbinskij fiziko-matematičeskij žurnal %D 2020 %P 218-232 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a2/ %G ru %F CHFMJ_2020_5_2_a2
P. D. Lebedev; A. A. Uspenskii; V. N. Ushakov. Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 218-232. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a2/
[1] Bronshtein E.M., “Approximations of convex sets by polytops”, Contemporary Mathematics. Fundamental Directions, 22 (2007), 5–37 (In Russ.)
[2] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, “Comparing images using the Hausdorff distance”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15:9 (1993), 850–863
[3] P. M. Gruber, “Approximation by convex polytopes”, Polytopes: Abstract, Convex and Computational, NATO ASI Series (Series C: Mathematical and Physical Sciences), 440 (1994), 173–203 | MR | Zbl
[4] Hausdorff F., Set theory, Komkniga Publ., Moscow, 2006, 304 pp. (In Russ.)
[5] A. S. Lakhtin, V. N. Ushakov, “Minimization of Hausdorf distance between convex polyhedrons”, Journal of Mathematical Sciences, 126:6 (2005), 1553–1560 | MR | Zbl
[6] Ushakov V.N., Lakhtin A.S., Lebedev P.D., “Optimization of the Hausdorff distance between sets in Euclidean space”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 222–238 | MR
[7] Brusov V.S., Piyavskii S.A., “A computational algorithm for optimally covering a plane region”, USSR Computational Mathematics and Mathematical Physics, 11:2 (1971), 17–27 (In Russ.)
[8] Lebedev P.D., Uspenskii A.A., “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the target set boundary”, Proceedings of Istitute of Mathematics and Mechanics of Ural Branch of RAS, 25, no. 1, 2019, 108-119 (In Russ.)
[9] Lebedev P.D., Uspenskii A.A., Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program no. 2017662074, October 27, 2017
[10] D. Siersma, “Properties of conflict sets in the plan”, Banach Center Publications, 50 (1999), 267–276 | MR | Zbl
[11] Ushakov V.N., Lebedev P.D., “Iterative methods for minimization of the Hausdorff distance between movable polygons”, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Sciences, 27:1 (2017), 86–97 (In Russ.) | MR | Zbl
[12] Polovinkin E.S., Balashov M.V., Elements of convex and strong convex analysis, Fizmatlit Publ., Moscow, 2004, 416 pp. (In Russ.)
[13] Garkavi A.L., “On the Chebyshev center and convex hull of a set”, Advances in Mathematical Sciences, 19:6 (1964), 139–145 (In Russ.) | MR | Zbl
[14] Alimov A.R., Tsar'kov I.G., “Chebyshev centres, Jung constants, and their applications”, Russian Mathematical Surveys, 74:5 (2019), 3–82 | MR | Zbl
[15] Pshenichnyi B.N., Convex analysis and extremal problems, Nauka, Moscow, 1980 (In Russ.) | MR
[16] Dem'yanov V.F., Vasil'ev L.V., Nondifferentiable Optimization, Springer-Verlag, New York, 1985, xvii+452 pp. | MR