Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_2_a11, author = {I. F. Sharafullin and A. G. Nugumanov and A. R. Yuldasheva and N. M. Nugaeva and M. H. Kharrasov and H. T. Diep}, title = {Monte {Carlo} study of phase transitions and skyrmion crystal in magneto-antiferroelectric heterostructures with triangular lattice}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {202--210}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a11/} }
TY - JOUR AU - I. F. Sharafullin AU - A. G. Nugumanov AU - A. R. Yuldasheva AU - N. M. Nugaeva AU - M. H. Kharrasov AU - H. T. Diep TI - Monte Carlo study of phase transitions and skyrmion crystal in magneto-antiferroelectric heterostructures with triangular lattice JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2020 SP - 202 EP - 210 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a11/ LA - en ID - CHFMJ_2020_5_2_a11 ER -
%0 Journal Article %A I. F. Sharafullin %A A. G. Nugumanov %A A. R. Yuldasheva %A N. M. Nugaeva %A M. H. Kharrasov %A H. T. Diep %T Monte Carlo study of phase transitions and skyrmion crystal in magneto-antiferroelectric heterostructures with triangular lattice %J Čelâbinskij fiziko-matematičeskij žurnal %D 2020 %P 202-210 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a11/ %G en %F CHFMJ_2020_5_2_a11
I. F. Sharafullin; A. G. Nugumanov; A. R. Yuldasheva; N. M. Nugaeva; M. H. Kharrasov; H. T. Diep. Monte Carlo study of phase transitions and skyrmion crystal in magneto-antiferroelectric heterostructures with triangular lattice. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 2, pp. 202-210. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_2_a11/
[1] Fert A., Cros V., Sampaio J., “Skyrmions on the track”, Nature Nanotechnology, 8:3 (2013), 152–156
[2] Koshibae W., Kaneko Y., Iwasaki J., Kawasaki M., Tokura Y., Nagaosa N., “Memory functions of magnetic skyrmions”, Japanese Journal of Applied Physics, 54:5 (2015), 053001
[3] Rosch A., “Spintronics: Electric control of skyrmions”, Nature Nanotechnology, 12:2 (2017), 103–104 | MR
[4] Everschor-Sitte K., Masell J., Reeve R.M., Kläui M., “Perspective: Magnetic skyrmions — Overview of recent progress in an active research field”, Journal of Applied Physics, 124:24 (2018), 240901
[5] Soumyanarayanan A., Reyren N., Fert A., Panagopoulos C., “Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces”, Nature, 539 (2016), 509–517
[6] Kang W., Huang Y.Q., Zhang X.C., Zhou Y., Zhao W.S., “Skyrmion-electronics: An overview and outlook”, Proceedings of the IEEE, 104:10 (2016), 2040–2061
[7] Kang W., Zheng C., Huang Y.Q., Zhang X.C., Zhou Y., Lv W., Zhao W.S., “Complementary skyrmion racetrack memory with voltage manipulation”, IEEE Electron Device Letters, 37:7 (2016), 924–927
[8] Zhang X., Zhou Y., Ezawa M., Zhao G.P., Zhao W., “Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack”, Scientific Reports, 5 (2015), 11369
[9] Xing X.J., Pong P.W.T., Zhou Y., “Skyrmion domain wall collision and domain wall-gated skyrmion logic”, Physical Review B, 94 (2016), 054408
[10] Breit J.D., Nappi C.R., “Phase-shifts of the skyrmion breathing mode”, Physical Review Letters, 53 (1984), 889–891
[11] Romming N., Hanneken C., Menzel M., Bickel J.E., Wolter B., von Bergmann K., Kubetzka A., Wiesendanger R., “Writing and deleting single magnetic skyrmions”, Science, 341:6146 (2013), 636–639
[12] Finocchio G., Büttner F., Tomasello R., Carpentieri M., Kläui M., “Magnetic skyrmions: from fundamental to applications”, Journal of Physics D: Applied Physics, 49:42 (2016), 423001
[13] Kim S.K., Lee K.J., Tserkovnyak Y., “Self-focusing skyrmion racetracks in ferrimagnets”, Physical Review B, 95 (2017), 140404
[14] Kurumaji T., Nakajima T., Hirschberger M., Kikkawa A., Yamasaki Y., Sagayama H., Nakao H., Taguchi Y., Arima T., Tokura Y., “Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet”, Science, 365:6456 (2019), 914–918
[15] Yadav A.K., Nelson C.T., Hsu S.L., Hong Z., Clarkson J.D., Schlepütz C.M., Damodaran A.R., Shafer P., Arenholz E., Dedon L.R., Chen D., Vishwanath A., Minor A.M., Chen L.Q., Scott J.F., Martin L.W., Ramesh R., “Observation of polar vortices in oxide superlattices”, Nature, 530 (2016), 198–201
[16] Pei H., Guo S., Ren L., Chen C., Luo B., Dong X., Jin K., Ren R., Zeeshan H.M., “The frustration-induced ferroelectricity of a manganite tricolor superlattice with artificially broken symmetry”, Scientific Reports, 7 (2017), 6201
[17] El Hog S., Kato F., Koibuchi H., Diep H.T., “Skyrmions on 2D elastic surfaces with fixed boundary frame”, Journal of Magnetism and Magnetic Materials, 498 (2020), 166095
[18] El Hog S., Bailly-Reyre A., “Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii — Moriya interaction”, Journal of Magnetism and Magnetic Materials, 455 (2018), 32–38
[19] Pyatakov A., “Magnetoelectricity goes local: From bulk multiferroic crystals to ferroelectricity localized on magnetic topological textures”, Physica B: Condensed Matter, 542 (2018), 59–62
[20] Sharafullin I.F., Kharrasov M.Kh., Diep H.T., “Dzyaloshinskii — Moriya interaction in magnetoferroelectric superlattices: Spin waves and skyrmions”, Physical Review B, 99 (2019), 214420
[21] Sharafullin I.F., Kharrasov M.Kh., Diep H.T., “Magneto-ferroelectric interaction in superlattices: Monte Carlo study of phase transitions”, Journal of Magnetism and Magnetic Materials, 476 (2019), 258–267 | MR
[22] Sharafullin I.F., Diep H.T., “Skyrmion crystals and phase transitions in magneto-ferroelectric superlattices: Dzyaloshinskii — Moriya interaction in a frustrated $J1$-$J2$ model”, Symmetry, 12 (2020), 26–41
[23] Lamekhov S.V., Bychkov I.V., Kuzmin D.A., Shavrov V.G., “Monte Carlo modelling of two dimensional multiferroics”, Solid State Phenomena, 233 (2015), 379–382
[24] Leufke P.M., Kruk R., Brand R.A., Hahn H., “In situ magnetometry studies of magnetoelectric LSMO/PZT heterostructures”, Physical Review B, 87 (2013), 094416
[25] Ortiz-Alvarez H.H., Bedoya-Hincapie C.M., Restrepo-Parra E., “Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers”, Physica B: Condensed Matter, 454 (2014), 235–239
[26] Sokolovskiy V.V., Sokolovskaya Y.A., Zagrebin M.A., Buchelnikov V.D., Zayak A.T., “Ternary diagrams of magnetic properties of Ni-Mn-Ga Heusler alloys from ab initio and Monte Carlo studies”, Journal of Magnetism and Magnetic Materials, 470 (2019), 64–68 | MR
[27] Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D., “Monte Carlo simulations of hysteresis effects at the martensitic transformation”, Physica B: Condensed Matter, 575 (2019), 411692
[28] Sokolovskiy V.V., Miroshkina O.N., Zagrebin M.A., Buchelnikov V.D., “Prediction of giant magnetocaloric effect in Ni$_{40}$Co$_{10}$Mn$_{36}$Al$_{14}$ Heusler alloys: An insight from ab initio and Monte Carlo calculations”, Journal of Applied Physics, 127:16 (2020), 163901
[29] Landau D.P., Binder K., A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 2009, 488 pp. | MR | Zbl
[30] Ngo V.T., Diep H.T., “Effects of frustrated surface in Heisenberg thin films”, Physical Review B, 75 (2007), 035412
[31] El Hog S., Diep H.T., “Partial phase transition and quantum effects in helimagnetic films under an applied field”, Journal of Magnetism and Magnetic Materials, 429 (2017), 102–109