On measuring the cost of liquidity in the limit order book
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 96-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the elaboration and demonstration of a method for measuring the cost of illiquidity in the delta hedging of futures-style options on the Moscow Exchange. Illiquidity is usually measured per unit of asset or money. However, given the specifics of futures, this article proposes to use the total volume of the initial margin and the state of the limit order book. In this case, it becomes possible to compare the cost of illiquidity for various futures. The most liquid futures that are traded on the Moscow Exchange are analyzed and the cost of liquidity is compared.
Keywords: limit order book, illiquidity, hedging, initial margin.
@article{CHFMJ_2020_5_1_a6,
     author = {M. M. Dyshaev},
     title = {On measuring the cost of liquidity in the limit order book},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {96--104},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/}
}
TY  - JOUR
AU  - M. M. Dyshaev
TI  - On measuring the cost of liquidity in the limit order book
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 96
EP  - 104
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/
LA  - en
ID  - CHFMJ_2020_5_1_a6
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%T On measuring the cost of liquidity in the limit order book
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 96-104
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/
%G en
%F CHFMJ_2020_5_1_a6
M. M. Dyshaev. On measuring the cost of liquidity in the limit order book. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 96-104. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/

[1] Frey R., Stremme A., “Market volatility and feedback effects from dynamic hedging”, Mathematical Finance, 7:4 (1997), 351–374 | DOI | MR | Zbl

[2] Frey R., “Perfect option hedging for a large trader”, Finance and Stochastics, 2:2 (1998), 115–141 | DOI | Zbl

[3] Sircar R.K., Papanicolaou G., “General {Black-Scholes} models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | MR | Zbl

[4] Schönbucher P.J., Wilmott P., “The feedback effect of hedging in illiquid markets”, SIAM Journal of Applied Mathematics, 61:1 (2000), 232–272 | DOI | MR | Zbl

[5] Bank P., Baum D., “Hedging and portfolio optimization in financial markets with a large trader.”, Mathematical Finance, 14:1 (2004), 1–18 | DOI | MR | Zbl

[6] Bank P., Soner H.M., Voß M., “Hedging with temporary price impact”, Mathematics and Financial Economics, 11:2 (2017), 215–239 | DOI | MR | Zbl

[7] Rogers L.C.G., Singh S., “The cost of illiquidity and its effects on hedging”, Mathematical Finance, 20:4 (2010), 597–615 | DOI | MR | Zbl

[8] Agliardi R., Gen{{Ç}}ay R., “Hedging through a limit order book with varying liquidity”, The Journal of Derivatives, 22:2 (2014), 32–49 | DOI | MR

[9] Almgren R., Li T.M., “Option hedging with smooth market impact”, Mark. Microstructure Liq., 2:01 (2016), 1650002 | DOI

[10] Bouchard B., Loeper G., Zou Y., “Hedging of covered options with linear market impact and gamma constraint.”, SIAM Journal on Control and Optimization, 55:5 (2017), 3319–3348 | DOI | MR | Zbl

[11] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, Mathematical Finance, 27:3 (2017), 803–831 | DOI | MR

[12] Cartea A., Gan L., Jaimungal S., “Hedge and speculate: replicating option payoffs with limit and market orders”, SIAM Journal on Financial Mathematics, 10:3 (2019), 790–814 | DOI | MR | Zbl

[13] Bertsimas D., Lo A.W., “Optimal control of execution costs”, Journal of Financial Markets, 1:1 (1998), 1–50 | DOI | MR

[14] Almgren R., Chriss N., “Optimal execution of portfolio transactions”, Journal of Risk, 3:2 (2001), 5–39 | DOI

[15] Alfonsi A., Fruth A., Schied A., “Optimal execution strategies in limit order books with general shape functions.”, Quantitative Finance, 10:2 (2010), 143–157 | DOI | MR | Zbl

[16] Obizhaeva A.A., Wang J., “Optimal trading strategy and supply/demand dynamics”, Journal of Financial Markets, 16:1 (2013), 1–32 | DOI

[17] Cartea Á., Jaimungal S., “Optimal execution with limit and market orders”, Quantitative Finance, 15:8 (2015), 1279–1291 | DOI | MR | Zbl

[18] Malo P., Pennanen T., “Reduced form modeling of limit order markets”, Quantitative Finance, 12:7 (2012), 1025–1036 | DOI | MR | Zbl

[19] Moscow Exchange, Initial margin, accessed 21.01.2020 https://www.moex.com/s1696

[20] Moscow Exchange, Market Date, accessed 21.01.2020 https://www.moex.com/en/marketdata