Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_1_a6, author = {M. M. Dyshaev}, title = {On measuring the cost of liquidity in the limit order book}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {96--104}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/} }
M. M. Dyshaev. On measuring the cost of liquidity in the limit order book. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 96-104. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a6/
[1] Frey R., Stremme A., “Market volatility and feedback effects from dynamic hedging”, Mathematical Finance, 7:4 (1997), 351–374 | DOI | MR | Zbl
[2] Frey R., “Perfect option hedging for a large trader”, Finance and Stochastics, 2:2 (1998), 115–141 | DOI | Zbl
[3] Sircar R.K., Papanicolaou G., “General {Black-Scholes} models accounting for increased market volatility from hedging strategies”, Applied Mathematical Finance, 5:1 (1998), 45–82 | DOI | MR | Zbl
[4] Schönbucher P.J., Wilmott P., “The feedback effect of hedging in illiquid markets”, SIAM Journal of Applied Mathematics, 61:1 (2000), 232–272 | DOI | MR | Zbl
[5] Bank P., Baum D., “Hedging and portfolio optimization in financial markets with a large trader.”, Mathematical Finance, 14:1 (2004), 1–18 | DOI | MR | Zbl
[6] Bank P., Soner H.M., Voß M., “Hedging with temporary price impact”, Mathematics and Financial Economics, 11:2 (2017), 215–239 | DOI | MR | Zbl
[7] Rogers L.C.G., Singh S., “The cost of illiquidity and its effects on hedging”, Mathematical Finance, 20:4 (2010), 597–615 | DOI | MR | Zbl
[8] Agliardi R., Gen{{Ç}}ay R., “Hedging through a limit order book with varying liquidity”, The Journal of Derivatives, 22:2 (2014), 32–49 | DOI | MR
[9] Almgren R., Li T.M., “Option hedging with smooth market impact”, Mark. Microstructure Liq., 2:01 (2016), 1650002 | DOI
[10] Bouchard B., Loeper G., Zou Y., “Hedging of covered options with linear market impact and gamma constraint.”, SIAM Journal on Control and Optimization, 55:5 (2017), 3319–3348 | DOI | MR | Zbl
[11] Guéant O., Pu J., “Option pricing and hedging with execution costs and market impact”, Mathematical Finance, 27:3 (2017), 803–831 | DOI | MR
[12] Cartea A., Gan L., Jaimungal S., “Hedge and speculate: replicating option payoffs with limit and market orders”, SIAM Journal on Financial Mathematics, 10:3 (2019), 790–814 | DOI | MR | Zbl
[13] Bertsimas D., Lo A.W., “Optimal control of execution costs”, Journal of Financial Markets, 1:1 (1998), 1–50 | DOI | MR
[14] Almgren R., Chriss N., “Optimal execution of portfolio transactions”, Journal of Risk, 3:2 (2001), 5–39 | DOI
[15] Alfonsi A., Fruth A., Schied A., “Optimal execution strategies in limit order books with general shape functions.”, Quantitative Finance, 10:2 (2010), 143–157 | DOI | MR | Zbl
[16] Obizhaeva A.A., Wang J., “Optimal trading strategy and supply/demand dynamics”, Journal of Financial Markets, 16:1 (2013), 1–32 | DOI
[17] Cartea Á., Jaimungal S., “Optimal execution with limit and market orders”, Quantitative Finance, 15:8 (2015), 1279–1291 | DOI | MR | Zbl
[18] Malo P., Pennanen T., “Reduced form modeling of limit order markets”, Quantitative Finance, 12:7 (2012), 1025–1036 | DOI | MR | Zbl
[19] Moscow Exchange, Initial margin, accessed 21.01.2020 https://www.moex.com/s1696
[20] Moscow Exchange, Market Date, accessed 21.01.2020 https://www.moex.com/en/marketdata