Comparative analysis of two-sided estimates of the central binomial coefficient
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 70-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical analysis of two-sided estimates of the central binomial coefficient and some special quotients of the gamma function is presented. We give detailed calculation tables and compare the quality of several possible estimates with each other. The results illustrate, in particular, the analytical study of A.Yu. Popov, which is published in the same issue of the "Chelyabinsk Physical and Mathematical Journal" . Theoretical and historical information is provided. In addition, an elementary proof of some estimate with optimal choice of parameters is proposed.
Keywords: central binomial coefficient, the gamma function, two-sided estimates, continued fractions, systems of computer mathematics.
@article{CHFMJ_2020_5_1_a5,
     author = {I. V. Tikhonov and V. B. Sherstyukov and D. G. Tsvetkovich},
     title = {Comparative analysis of two-sided estimates of the central binomial coefficient},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {70--95},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a5/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
AU  - D. G. Tsvetkovich
TI  - Comparative analysis of two-sided estimates of the central binomial coefficient
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 70
EP  - 95
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a5/
LA  - ru
ID  - CHFMJ_2020_5_1_a5
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A V. B. Sherstyukov
%A D. G. Tsvetkovich
%T Comparative analysis of two-sided estimates of the central binomial coefficient
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 70-95
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a5/
%G ru
%F CHFMJ_2020_5_1_a5
I. V. Tikhonov; V. B. Sherstyukov; D. G. Tsvetkovich. Comparative analysis of two-sided estimates of the central binomial coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 70-95. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a5/

[1] Tikhonov I.V., Sherstyukov V.B., “The module function approximation by Bernstein polynomials”, Bulletin of Chelyabinsk State University, 2012, no. 26, 6–40 (In Russ.)

[2] Tikhonov I.V., Sherstyukov V.B., Petrosova M.A., “Bernstein polynomials: the old and the new”, Mathematical forum. Research on mathematical analysis, 8, no. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 126–175 (In Russ.)

[3] Shklyarskiy D.O., Chentsov N.N., Yaglom I.M., Selected problems and theorems of elementary mathematics, Nauka Publ., Moscow, 1965, 455 pp. (In Russ.)

[4] Eyler L., Differential calculus, Gostekhizdat Publ., Moscow, Leningrad, 1949, 580 pp. (In Russ.)

[5] K. Knopp, Theorie und Anwendung der unendlichen Reihen. Fünfte berichtigte Auflage, Springer-Verlag, Berlin et al., 1964, xii+582 pp. | MR

[6] De la Vallée Poussin Ch.-J., Cours d’Analyse infinitésimale, v. I, Gauthier-Villars, Louvain, Paris, Uystpruyst-Diedonné, 1914, xiv+372 pp.

[7] Deza E.I., Special combinatorial numbers: From Stirling numbers to Motzkin numbers: all about twelve known numerical sets of the combinatorial nature (history, classic properties, examples and tasks), Lenand Publ. (URSS), Moscow, 2018, 504 pp. (In Russ.)

[8] Central binomial coefficient, Wikipedia, the free encyclopedia (Data obrascheniya: 03.01.2020) https://en.wikipedia.org/wiki/Central_binomial_coefficient

[9] Z. Sasvári, “Inequalities for binomial coefficients”, Journal of Mathematical Analysis and Applications, 236:1 (1999), 223–226 | DOI | MR | Zbl

[10] Popov A.Yu., “Two-sided estimates of the central binomial coefficient”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 56–69 (In Russ.)

[11] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge University Press, Cambridge, 1927, iv+608 pp. | MR | Zbl

[12] G. N. Watson, “A note on gamma function”, Edinburgh Mathematical Notes, 42 (1959), 7–9 | DOI | MR

[13] D. K. Kazarinoff, “On Wallis' formula”, Edinburgh Mathematical Notes, 40 (1956), 19–21 | DOI | MR | Zbl

[14] D. V. Slavić, “On inequalities for $\Gamma(x+1)/\Gamma(x+1/2)$”, Univ. Beograd. Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, 1975, no. 498/541, 17–20 | MR | Zbl

[15] Timchenko I., Foundations of the theory of analytic functions. Part I. Historical information on the development of concepts and methods underlying the theory of analytic functions, Tipografiya A. Shul'tse, Odessa, 1899, xv+656 pp. (In Russ.)

[16] The history of mathematics from ancient times to the beginning of the XIX century, v. 2, 17th Century Mathematics, Nauka Publ., Moscow, 1970, 303 pp. (In Russ.)

[17] J. A. Stedall, “Catching Proteus: the collaborations of Wallis and Brounker. I. Squaring the circle”, Notes and records of the Royal Society of London, 54:3 (2000), 293–316 | DOI | MR | Zbl

[18] J. Dutka, “Wallis's product, Brouncker's continued fraction, and Leibniz's series”, Archive for History of Exact Sciences, 26:2 (1982), 115–126 | DOI | MR | Zbl

[19] G. Bauer, “Von einem Kettenbruche Euler's und einem Theorem von Wallis”, Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalische Klasse, 11, 1872, 97–116

[20] B. C. Berndt, Ramanujan's Notebooks. Part II, Springer-Verlag, New-York et al., 1989, x+360 pp. | MR | Zbl

[21] H. Granath, “On inequalities and asymptotic expansions for the Landau constants”, Journal of Mathematical Analysis and Applications, 386:2 (2012), 738–743 | DOI | MR | Zbl

[22] C. Mortici, “New approximation formulas for evaluating the ratio of gamma functions”, Mathematical and Computer Modelling, 52:1–2 (2010), 425–433 | DOI | MR | Zbl

[23] F. G. Tricomi, A. Erdélyi, “The asymptotic expansion of a ratio of gamma functions”, Pacific Journal of Mathematic, 1:1 (1951), 133–142 | DOI | MR | Zbl

[24] Andrews G.E., Askey R., Roy R., Special Functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1999, xvi+664 pp. | MR | Zbl

[25] T. Burić, N. Elezović, “New asymptotic expansions of the quotient of gamma functions”, Integral Transforms and Special Functions, 23:5 (2012), 355–368 | DOI | MR | Zbl

[26] Gel'fond A.O., Calculus of Finite Differences, Hindustan Publishing Corporation, Delhi, 1971, vi+451 pp. | MR | MR | Zbl

[27] Luke Y.L., Mathematical Functions and Their Approximations, Academic Press, New York, 1975, xvii+568 pp. | MR | Zbl

[28] A. Laforgia, P. Natalini, “On the asymptotic expansion of a ratio of gamma functions”, Journal of Mathematical Analysis and Applications, 389:2 (2012), 833–837 | DOI | MR | Zbl

[29] F. Qi, Q. Luo, “Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pecǎrić's theorem”, Journal of Inequalities and Applications, 542 (2013), 1–20 | MR

[30] D. E. Knuth, I. Vardi, R. Richberg, “The asymptotic expansion of the middle binomial coefficient”, American Mathematical Monthly, 97:7 (1990), 626–630 | DOI | MR