Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2020_5_1_a4, author = {A. Yu. Popov}, title = {Two-sided estimates of the central binomial coefficient}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {56--69}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/} }
A. Yu. Popov. Two-sided estimates of the central binomial coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 56-69. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/
[1] Z. Sasvári, “Inequalities for binomial coefficients”, Journal of Mathematical Analysis and Applications, 236:1 (1999), 223–226 | DOI | MR | Zbl
[2] Tikhonov I.V., Sherstyukov V.B., Tsvetkovich D.G., “Comparative analysis of the two-sided estimates of the central binomial coefficient”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 70–95 (In Russ.)
[3] Polya G., Szegö G., Aufgaben und Lehrsätze aus der Analysis. Erste Band. Reihen. Integralrechnung. Funktionentheorie, Springer-Verlag, Berlin, Göttingen, Heidelberg, New–York, 1964, xvi+338 s pp. | MR
[4] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series, v. 1, Elementary functions, Nauka Publ., Moscow, 1981, 800 pp. (In Russ.) | MR
[5] Akhiezer N.I., Elements of the Theory of Elliptic Functions, Translations of mathematical monographs, American Mathematical Society, 1990, 237 pp. | DOI | MR | MR | Zbl
[6] Whittaker E.T., Watson G.N., A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927, iv+608 pp. | MR | Zbl
[7] Gel'fond A.O., Calculus of Finite Differences, Hindustan Publishing Corporation, Delhi, 1971, vi+451 pp. | MR | MR | Zbl