Two-sided estimates of the central binomial coefficient
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 56-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The previous two-sided estimates of the central binomial coefficient are strengthened. The established boundaries are sufficiently exact. They act immediately on the sequence $C_ {2n} ^ n$ for all numbers $n\in\mathbb{N}$. The results can be used in mathematical analysis, combinatorics and probability theory.
Keywords: combinatorial values, central binomial coefficient, two-sided estimates, asymptotic expansion, enveloping series.
@article{CHFMJ_2020_5_1_a4,
     author = {A. Yu. Popov},
     title = {Two-sided estimates of the central binomial coefficient},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {56--69},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Two-sided estimates of the central binomial coefficient
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 56
EP  - 69
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/
LA  - ru
ID  - CHFMJ_2020_5_1_a4
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Two-sided estimates of the central binomial coefficient
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 56-69
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/
%G ru
%F CHFMJ_2020_5_1_a4
A. Yu. Popov. Two-sided estimates of the central binomial coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 56-69. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a4/

[1] Z. Sasvári, “Inequalities for binomial coefficients”, Journal of Mathematical Analysis and Applications, 236:1 (1999), 223–226 | DOI | MR | Zbl

[2] Tikhonov I.V., Sherstyukov V.B., Tsvetkovich D.G., “Comparative analysis of the two-sided estimates of the central binomial coefficient”, Chelyabinsk Physical and Mathematical Journal, 5:1 (2020), 70–95 (In Russ.)

[3] Polya G., Szegö G., Aufgaben und Lehrsätze aus der Analysis. Erste Band. Reihen. Integralrechnung. Funktionentheorie, Springer-Verlag, Berlin, Göttingen, Heidelberg, New–York, 1964, xvi+338 s pp. | MR

[4] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series, v. 1, Elementary functions, Nauka Publ., Moscow, 1981, 800 pp. (In Russ.) | MR

[5] Akhiezer N.I., Elements of the Theory of Elliptic Functions, Translations of mathematical monographs, American Mathematical Society, 1990, 237 pp. | DOI | MR | MR | Zbl

[6] Whittaker E.T., Watson G.N., A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927, iv+608 pp. | MR | Zbl

[7] Gel'fond A.O., Calculus of Finite Differences, Hindustan Publishing Corporation, Delhi, 1971, vi+451 pp. | MR | MR | Zbl