Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. I
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the regular solvability for problems to quasilinear three-dimensional parabolic equation with the axial symmetry in a non-cylindrical region with a given boundary from the class $W^1_2$ (part I) or an unknown one in general by time (part II). In the second case, the equation describes the processes of phase transitions of a substance from one state to another. The boundary of the transition phase is unknown and is determined together with the solution. Unlike the well-known Stefan's problem, when the latent heat of fusion of a substance is known, here we consider the problem when it is necessary to determine this characteristic, if the volume of the melted substance for a given period is known.
Keywords: Stefan's condition, nonlinear parabolic equation, non-cylindrical domain, compactness theorem.
@article{CHFMJ_2020_5_1_a3,
     author = {A. G. Podgaev},
     title = {Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. {I}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a3/}
}
TY  - JOUR
AU  - A. G. Podgaev
TI  - Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. I
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 44
EP  - 55
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a3/
LA  - ru
ID  - CHFMJ_2020_5_1_a3
ER  - 
%0 Journal Article
%A A. G. Podgaev
%T Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. I
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 44-55
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a3/
%G ru
%F CHFMJ_2020_5_1_a3
A. G. Podgaev. Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. I. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 44-55. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a3/

[1] Danilyuk I.I., “On the Stefan problem”, Russian Mathematical Surveys, 40:5 (1985), 157–-223 | DOI | MR | Zbl

[2] Meirmanov A.M., The Stefan Problem, Walter de Gruyter and Co., Berlin, 1992 (In Russ.) | MR

[3] Samarsky A.A., Vabishchevich P.N., Computational heat transfer, Editorial URSS Publ., Moscow, 2003, 784 pp. (In Russ.)

[4] Gol'dman N.L., “One-phase inverse Stefan problems with unknown nonlinear sources”, Differential Equations, 49:6 (2013), 680–687 | MR | Zbl

[5] Meirmanov A.M., Gal'tseva O.A., Sel'demirov V.E., “The existence of a generalized solution in general by time of a problem with a free boundary”, Mathematical Notes, 107:2 (2020), 229–240 (In Russ.) | DOI | MR

[6] Popov S.V., Shadrina A.I., “Contact parabolic boundary value problems for second-order equations”, Mathematical notes of Yakut State University, 16:2 (2009), 66–77 (In Russ.) | Zbl

[7] Ladyzenskaya O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1968, 648 pp. | MR

[8] Chzhou Yuy-lin', “Boundary problems for non-linear parabolic equations”, Mathematical collection, 47 (89):4 (1959), 431–484 (In Russ.) | Zbl

[9] Uspenskiy A.B., “On the front straightening method for the multi-front Stefan problem”, Reports of the USSR Academy of Sciences, 172:1 (1967), 61–64 (In Russ.)

[10] Podgaev A.G., Istomina N.E., “On the Faedo — Galerkin method for a degenerate quasilinear equation in a non-cylindrical region”, Far Eastern Mathematical Journal, 2014, no. 1, 73–89 (In Russ.) | MR | Zbl

[11] Podgaev A.G., Sin A.Z., “On a generalization of the Vishik — Dubinskiy lemma and the Gronwall inequality”, Scientific notes of the Pacific National University, 4:4 (2013), 2113–2118 (In Russ.)

[12] Egorov I.E., “On a general boundary value problem for a singular ordinary differential equation”, Mathematical notes of Yakut State University, 15:1 (2008), 45–51 (In Russ.)

[13] Podgaev A.G., Lisenkov K.V., “Solvability of a quasilinear parabolic equation in a region with a piecewise-monotonic boundary”, Far Eastern Mathematical Journal, 13:2 (2013), 250–272 (In Russ.) | MR | Zbl

[14] Podgaev A.G., “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Siberian Mathematical Journal, 34:2 (1993), 320–329 | DOI | MR | Zbl

[15] Ladyzhenskaya O.A., Ural’tseva N.N., Linear and Quasi-Linear Elliptic Equations, Academic Press, New York, 1968, 514 pp. | MR | MR