Mixed control for linear infinite-dimensional systems of fractional order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problem with a mixed control, start and distributed simultaneously, are considered for time-fractional order evolution equations. The results on the solvability of the mixed control problems for linear non-degenerate and degenerate equations with the Gerasimov — Caputo fractional derivative are obtained. It is shown that at some additional conditions a solution of the considered problem is unique. General results are used for consideration of abstract problems with specific quality functionals. Abstract results of the work are illustrated by the example of a mixed control problem for the time-fractional order system of gravitational-gyroscopic waves.
Keywords: optimal control, mixed control, fractional order equation, Gerasimov — Caputo derivative, degenerate evolution equation.
@article{CHFMJ_2020_5_1_a2,
     author = {M. V. Plekhanova and A. F. Shuklina},
     title = {Mixed control for linear infinite-dimensional systems of fractional order},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {32--43},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a2/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - A. F. Shuklina
TI  - Mixed control for linear infinite-dimensional systems of fractional order
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2020
SP  - 32
EP  - 43
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a2/
LA  - ru
ID  - CHFMJ_2020_5_1_a2
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A A. F. Shuklina
%T Mixed control for linear infinite-dimensional systems of fractional order
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2020
%P 32-43
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a2/
%G ru
%F CHFMJ_2020_5_1_a2
M. V. Plekhanova; A. F. Shuklina. Mixed control for linear infinite-dimensional systems of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 5 (2020) no. 1, pp. 32-43. http://geodesic.mathdoc.fr/item/CHFMJ_2020_5_1_a2/

[1] F. Mainardi, “The time fractional diffusion-wave equations”, Radiophysics and Quantum Electronics, 38 (1995), 13–24 | DOI | MR

[2] F. Mainardi, Y. F. Luchko, G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation”, Fractional Calculus and Applied Analysis, 4:2 (2001), 153–192 | MR | Zbl

[3] Uchaikin V.V., Fractional derivatives method, Artishok, Ulyanovsk, 2008, 510 pp. (In Russ.)

[4] V. E. Tarasov, Fractional dynamics, Higher Education Press, Beijing, 2010, 504 pp. | MR | Zbl

[5] Plekhanova M.V., Islamova A.F., “Solvability of mixed-type optimal control problems for distributed systems”, Russian Mathematics, 55:7 (2011), 30–39 | DOI | MR | Zbl

[6] Plekhanova M.V., Islamova A.F., “Problems with a robust mixed control for the linearized Boussinesq equation”, Differential Equations, 48:4 (2012), 574–585 | DOI | MR | Zbl

[7] Shuklina A.F., Plekhanova M.V., “Mixed control problems for the Sobolev system”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 78–84 (In Russ.) | MR

[8] Mixed control problem for the linearized quasi-stationary phase field system of equations, “Plekhanova M.V.”, Materials Science Forum, 845 (2016), 170–173 | DOI

[9] Plekhanova M.V., “Start control problems for evolution equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 1:3 (2016), 16–37 (In Russ.) | MR

[10] Plekhanova M.V., “Strong solutions to nonlinear degenerate fractional order evolution equations”, Journal of Mathematical Sciences, 230:1 (2018), 146–158 | DOI | MR | MR | Zbl

[11] M. V. Plekhanova, “Degenerate distributed control systems with fractional time derivative”, Ural Mathematical Journal, 2:2 (2016), 58–71 | DOI | MR | Zbl

[12] M. V. Plekhanova, “Optimal control for quasilinear degenerate systems of higher order”, Journal of Mathematical Sciences, 219 (2016), 236–244 | DOI | MR | Zbl

[13] Plekhanova M.V., “Solvability of control problems for degenerate evolution equations of fractional order”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 53–65 (In Russ.) | MR

[14] M. V. Plekhanova, “Distributed control problems for a class of degenerate semilinear evolution equations”, Journal of Computational and Applied Mathematics, 312 (2017), 39–46 | DOI | MR | Zbl

[15] M. V. Plekhanova, G. D. Baybulatova, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11548 LNCS, 2019, Problems of hard control for a class of degenerate fractional order evolution equations | MR

[16] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications., American Mathematical Society, 2000, 305 pp. (In Russ.) | MR | Zbl

[17] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, 2001, 107 pp. | MR | Zbl

[18] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003 | MR | Zbl

[19] Demidenko G.V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York, Basel, 2003, 481 pp.

[20] Sobolev S.L., “On a new problem for systems of partial differential equations”, Reports of the USSR Academy of Sciences, 81:6 (1951), 1007–1009 (In Russ.) | Zbl

[21] Sobolev S.L., “On a new problem of mathematical physics”, News of the USSR Academy of Sciences, 18 (1954), 3–50 (In Russ.) | MR | Zbl

[22] Plekhanova M.V., Baybulatova G.D., “Optimal control problems for a class of degenerate evolution equations with delay”, Chelyabinsk Physical and Mathematical Journal, 3:3 (2018), 319-331 (In Russ.) | MR