Accounting of transaction costs for delta-hedging of options
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 375-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some pricing models of options with modified volatility are considered. These models allow to take into account the presence of transaction costs during delta-hedging. Modified volatility formulas for each model are given. Usually, the value of transaction costs depends on the frequency and volume of hedging transactions. Using an example of risk adjusted pricing methodology (RAPM), a possible algorithm for obtaining the value of the optimal rebalancing interval is demonstrated. The numerical solution of the nonlinear equation with a modified volatility from the RAPM model is found. As a practical example, the dependence of the optimal delta-hedging interval on the price of the underlying asset and the time remaining until the exercise of the option is constructed. For the practical using of the optimal interval of the rebalancing some recommendations are made.
Keywords: Black — Scholes model, transaction costs, RAPM, delta hedging.
@article{CHFMJ_2019_4_4_a0,
     author = {M. M. Dyshaev},
     title = {Accounting of transaction costs for delta-hedging of options},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {375--386},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/}
}
TY  - JOUR
AU  - M. M. Dyshaev
TI  - Accounting of transaction costs for delta-hedging of options
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 375
EP  - 386
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/
LA  - ru
ID  - CHFMJ_2019_4_4_a0
ER  - 
%0 Journal Article
%A M. M. Dyshaev
%T Accounting of transaction costs for delta-hedging of options
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 375-386
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/
%G ru
%F CHFMJ_2019_4_4_a0
M. M. Dyshaev. Accounting of transaction costs for delta-hedging of options. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 375-386. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/

[1] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political Economy, 81:3 (1973), 637–654 | DOI

[2] R. C. Merton, “Theory of rational option pricing”, The Bell Journal of Economics and Management Science, 4:1 (1973), 141–183 | DOI

[3] J. C. Cox, S. A. Ross, M. Rubinstein, “Option pricing: a simplified approach”, Journal of Financial Economics, 7:3 (1979), 229–263 | DOI

[4] H. E. Leland, “Option pricing and replication with transactions costs”, The Journal of Finance, 40:5 (1985), 1283 – 1301 | DOI

[5] Y. M. Kabanov, M. M. Safarian, “On Leland’s strategy of option pricing with transactions costs”, Finance and Stochastics, 1:3 (1997), 239–250 | DOI

[6] Y. M. Kabanov, M. M. Safarian, Markets with transaction costs. Mathematical theory, Springer, Berlin, Heidelberg, 2010

[7] G. Barles, H. M. Soner, “Option pricing with transaction costs and a nonlinear Black — Scholes equation”, Finance and Stochastics, 2:4 (1988), 369–397 | DOI

[8] D. $\rm \check Sev\check covi \check c, M.\check Zit\check nansk\check a$, “Analysis of the nonlinear option pricing model under variable transaction costs”, Financial Markets, 23:2 (2016), 153–174

[9] M. Janda$\rm \check c$ka, D. $\rm \check Sev\check covi \check c$, “On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile”, Journal of Applied Mathematics, 2005:3 (2005), 235–258 | DOI

[10] J. Ankudinova, M. Ehrhardt, “On the numerical solution of nonlinear Black – Scholes equations”, Computers Mathematics with Applications, 56:3 (2008), 799–812 | DOI

[11] L. A. Bordag, “Study of the risk-adjusted pricing methodology model with methods of geometrical analysis”, Stochastics, 83:4–6 (2011), 333–345 | DOI

[12] M. M. Dyshaev, V. E. Fedorov, “Comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity”, Mathematical Notes of NEFU., 26:2 (2019), 94–108