Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_4_a0, author = {M. M. Dyshaev}, title = {Accounting of transaction costs for delta-hedging of options}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {375--386}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/} }
M. M. Dyshaev. Accounting of transaction costs for delta-hedging of options. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 4, pp. 375-386. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_4_a0/
[1] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political Economy, 81:3 (1973), 637–654 | DOI
[2] R. C. Merton, “Theory of rational option pricing”, The Bell Journal of Economics and Management Science, 4:1 (1973), 141–183 | DOI
[3] J. C. Cox, S. A. Ross, M. Rubinstein, “Option pricing: a simplified approach”, Journal of Financial Economics, 7:3 (1979), 229–263 | DOI
[4] H. E. Leland, “Option pricing and replication with transactions costs”, The Journal of Finance, 40:5 (1985), 1283 – 1301 | DOI
[5] Y. M. Kabanov, M. M. Safarian, “On Leland’s strategy of option pricing with transactions costs”, Finance and Stochastics, 1:3 (1997), 239–250 | DOI
[6] Y. M. Kabanov, M. M. Safarian, Markets with transaction costs. Mathematical theory, Springer, Berlin, Heidelberg, 2010
[7] G. Barles, H. M. Soner, “Option pricing with transaction costs and a nonlinear Black — Scholes equation”, Finance and Stochastics, 2:4 (1988), 369–397 | DOI
[8] D. $\rm \check Sev\check covi \check c, M.\check Zit\check nansk\check a$, “Analysis of the nonlinear option pricing model under variable transaction costs”, Financial Markets, 23:2 (2016), 153–174
[9] M. Janda$\rm \check c$ka, D. $\rm \check Sev\check covi \check c$, “On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile”, Journal of Applied Mathematics, 2005:3 (2005), 235–258 | DOI
[10] J. Ankudinova, M. Ehrhardt, “On the numerical solution of nonlinear Black – Scholes equations”, Computers Mathematics with Applications, 56:3 (2008), 799–812 | DOI
[11] L. A. Bordag, “Study of the risk-adjusted pricing methodology model with methods of geometrical analysis”, Stochastics, 83:4–6 (2011), 333–345 | DOI
[12] M. M. Dyshaev, V. E. Fedorov, “Comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity”, Mathematical Notes of NEFU., 26:2 (2019), 94–108