The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 333-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The difficulty in applying differential problems in practice lies mainly in the impossibility of obtaining their solutions in an analytical form, which makes the development of numerical methods relevant. In this paper, we constructed one implicit difference scheme approximating a boundary value problem of hyperbolic type with homogeneous boundary conditions. The order of approximation of the difference scheme is found. Particular attention is paid to the proof of its stability and convergence. In the proof, an approach similar to the method of separation of variables in mathematical physics was used. The author found the convergence condition imposed on the parameters of the difference scheme. A numerical experiment is carried out. A program has been developed to find and visualize an approximate solution.
@article{CHFMJ_2019_4_3_a5,
     author = {A. S. Sushkov},
     title = {The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {333--344},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a5/}
}
TY  - JOUR
AU  - A. S. Sushkov
TI  - The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 333
EP  - 344
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a5/
LA  - ru
ID  - CHFMJ_2019_4_3_a5
ER  - 
%0 Journal Article
%A A. S. Sushkov
%T The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 333-344
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a5/
%G ru
%F CHFMJ_2019_4_3_a5
A. S. Sushkov. The convergence of a difference scheme approximating a boundary value problem of the hyperbolic type. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 333-344. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a5/

[1] Kutuzov A.S., “Estimation of the approximate solution of a two-dimensional boundary inverse problem of the thermal diagnostics by the quasi-reversibility method”, Bulletin of South Ural State University. Ser.: Mathematics. Physics. Chemistry, 2009, no. 10 (143), 14–21 (In Russ.)

[2] Polyanin A.D., Handbook of mathematical physics linear equations, Fizmatlit Publ., Moscow, 2001, 576 pp. (In Russ.)

[3] Kutuzov A.S., Modelling of heat and mass transfer processes, described by partial differential equations on one- and two-dimensional domains, PhD thesis, Chelyabinsk, 2013 (In Russ.)

[4] Godunov S.K., Solving linear equation systems, Nauka Publ., Novosibirsk, 1980, 177 pp. (In Russ.)

[5] Godunov S.K., Ryaben'kii V.S., The difference schemes (introduction to the theory): a tutorial, Nauka Publ., Moscow, 1977, 440 pp. (In Russ.) | MR

[6] Samarskii A.A., The theory of difference schemes, Nauka Publ., Moscow, 1989, 616 pp. (In Russ.)

[7] Krylov V.I., Bobkov V.V., Monastyrnyi P.I., The beginning of the theory of computational methods. Partial differential equations, Nauka i Tekhnika Publ., Minsk, 1986, 311 pp. (In Russ.) | MR

[8] Samarskii A.A., Introduction to the theory of difference schemes, Nauka Publ., Moscow, 1971, 553 pp. (In Russ.)

[9] Kolmogorov A.N., Fomin S.V., Elements of the functions theory and functional analysis, Nauka Publ., Moscow, 1972, 496 pp. (In Russ.)

[10] (accessed 18.04.2019) https://github.com/Microsoft/InteractiveDataDisplay.WPF