Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_3_a3, author = {Yu. L. Nosov}, title = {Extremal by {Wiener} index maximal outerplane graphs with two simplicial vertices}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {285--322}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a3/} }
TY - JOUR AU - Yu. L. Nosov TI - Extremal by Wiener index maximal outerplane graphs with two simplicial vertices JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 285 EP - 322 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a3/ LA - ru ID - CHFMJ_2019_4_3_a3 ER -
Yu. L. Nosov. Extremal by Wiener index maximal outerplane graphs with two simplicial vertices. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 285-322. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a3/
[1] Harary F., Graph Theory, Addison-Wesley, Reading, 1969, 274 pp. | MR | Zbl
[2] B. Bollobás, Extremal Graph Theory, Academic Press, London–New York–San Francisco, 1978, 488 pp. | MR | Zbl
[3] Stankevich I.V., “Graphs in structural chemistry”, Application of graph theory in chemistry, Siberian Scientific Publishing House, Novosibirsk, 1988, 7–69 (In Russ.)
[4] I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, “Some recent results in the theory of the Wiener number”, Indian Journal of Chemistry, 32A (1993), 6751–661
[5] A. A. Dobrynin, R. C. Entringer, I. Gutman, “Wiener index of trees: theory and applications”, Acta Applicandae Mathematicae, 66:3 (2001), 211–249 | DOI | MR | Zbl
[6] M. Knor, R. S̆krekovski, A. Tepeh, “Mathematical aspects of Wiener index”, Ars Mathematica Contemporanea, 11:3 (2016), 327–352 | DOI | MR | Zbl
[7] R. C. Entringer, D. E. Jackson, D. A. Snyder, “Distance in graphs”, Czechoslovak Mathematical Journal, 26:101 (1976), 283–296 | MR | Zbl
[8] M. Fischermann, A. Hoffmann, D. Rautenbach, L. Szekely, L. Volkmann, “Wiener index versus maximum degree in trees”, Discrete Applied Mathematics, 122:1–3 (2002), 127–137 | DOI | MR | Zbl
[9] D. Stevanović, “Maximizing Wiener index of graphs with fixed maximum degree”, MATCH Communications in Mathematical and in Computer Chemistry, 60:1 (2008), 71–83 | MR | Zbl
[10] H. Wang, “The extremal values of the Wiener index of a tree with given degree sequence”, Discrete Applied Mathematics, 156:14 (2008), 2647–2654 | DOI | MR | Zbl
[11] X. D. Zhang, Q. Y. Xiang, L. Q. Xu, R. Y. Pan, “The Wiener index of trees with given degree sequences”, MATCH Communications in Mathematical and in Computer Chemistry, 60:2 (2008), 623–644 | MR | Zbl
[12] On the Wiener index of trees with fixed diameter, “H. Liu, X. F. Pan”, MATCH Communications in Mathematical and in Computer Chemistry, 60:2 (2008), 85–94 | MR
[13] K. Ch. Das., M. J. Nadjafi-Arani, “On maximum Wiener index of trees and graphs with given radius”, Journal of Combinatorial Optimization, 34:2 (2017), 574–587 | DOI | MR | Zbl
[14] P. Dankelmann, “Average distance and independence number”, Discrete Applied Mathematics, 51:1–2 (1994), 75–83 | DOI | MR | Zbl
[15] Minimum Wiener indices of trees and unicyclic graphs of given matching number, “Z. Du”, MATCH Communications in Mathematical and in Computer Chemistry, 63:1 (2010), 101–112 | MR
[16] H. Lin, “On the Wiener index of trees with given number of branching vertices”, MATCH Communications in Mathematical and in Computer Chemistry, 72:1 (2014), 301–310 | MR | Zbl
[17] H. Lin, “On segment sequences and the Wiener index of trees”, MATCH Communications in Mathematical and in Computer Chemistry, 75:1 (2016), 91–104 | MR
[18] A. M. Farley, A. Proskurowski, “Computation of the center and diameter of outerplanar graphs”, Discrete Applied Mathematics, 2:3 (1980), 185–191 | DOI | MR | Zbl
[19] A. Proskurowski, “Centers of maximal outerplanar graphs”, Journal of Graph Theory, 4:2 (1980), 75–79 | DOI | MR | Zbl
[20] A. S. Asratian, N. Oksimets, “Graphs with Hamiltonian balls”, The Australasian Journal of Combinatorics, 17:4 (1998), 185–198 | MR | Zbl
[21] Nosov Yu.L., “The Wiener index of maximal outerplane graphs”, Applied discrete mathematics, 26:4 (2014), 112–122 (In Russ.)
[22] Nosov Yu.L., “Maximal outerplane graphs with two simplicial vertices”, Applied discrete mathematics, 29:3 (2015), 95–109 (In Russ.)
[23] S. J. Cyvin, E. K. Lloyd, B. N. Cyvin, J. Brunvoll, “Chemical relevance of a pure combinatorial problem: Isomers of conjugated polyenes”, Structural Chemistry, 7:3 (1996), 183–186 | DOI
[24] P. F. Felzenszwalb, “Representation and detection of deformable shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:2 (2005), 208–220 | DOI
[25] Nosov Yu.L., “Maximal outerplane graphs of extremal diameter values”, Chelyabinsk Physical and Mathematical Journal, 3:4 (2018), 421–437 (In Russ.) | MR
[26] Wolfram Mathematica, (Accessed: 02.02.2019) https://www.wolfram.com/mathematica
[27] The On-Line Encyclopedia of Integer Sequences, (Accessed: 01.02.2019) http://www.oeis.org/A004526
[28] G. P. Moss, “Basic terminology of stereochemistry (IUPAC Recommendations 1996)”, Pure and Applied Chemistry, 68:12 (1996), 2193–2222 | DOI
[29] PubChem, (Accessed: 02.02.2019) https://pubchem.ncbi.nlm.nih.gov
[30] ChemSpider, (Accessed: 02.02.2019) http://www.chemspider.com