Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_3_a1, author = {S. V. Matveev}, title = {An example of the decomposition non-uniqueness for a 3-dimensional geometric object}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {265--275}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a1/} }
TY - JOUR AU - S. V. Matveev TI - An example of the decomposition non-uniqueness for a 3-dimensional geometric object JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 265 EP - 275 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a1/ LA - ru ID - CHFMJ_2019_4_3_a1 ER -
S. V. Matveev. An example of the decomposition non-uniqueness for a 3-dimensional geometric object. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 265-275. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a1/
[1] M. H. A. Newman, “On theories with a combinatorial definition of "equivalence" ”, Annals of Mathematics, 43 (1943), 223–243 | DOI | MR
[2] Shirshov A.I., “Some algorithmic issues for Lie algebras”, Siberian Mathematical Journal, 3:2 (1962), 292–296 (In Russ.) | Zbl
[3] Bokut' L.A., “Embeddings into simple associative algebras”, Algebra and Logic, 15:2 (1976), 73–90 (In Russ.) | MR | Zbl
[4] G. M. Bergman, “The diamond lemma for ring theory”, Advances in Mathematics, 29 (1978), 178–218 | DOI | MR
[5] T. Becker, V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra, Springer-Verlag, New York, 1998, 576 pp. | MR
[6] H. Kneser, “Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 28 (1929), 248–260
[7] H. Schubert, “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten”, S. B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 3 (1949), 57–104 | MR
[8] K. Miyazaki, “Conjugation and prime decomposition of knots in closed, oriented $3$-manifolds”, Transactions of the American Mathematical Society, 313 (1989), 785–804 | MR | Zbl
[9] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Moscow Mathematical Journal, 4 (2011), 1–10 | MR