@article{CHFMJ_2019_4_3_a1,
author = {S. V. Matveev},
title = {An example of the decomposition non-uniqueness for a 3-dimensional geometric object},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {265--275},
year = {2019},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a1/}
}
S. V. Matveev. An example of the decomposition non-uniqueness for a 3-dimensional geometric object. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 265-275. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a1/
[1] M. H. A. Newman, “On theories with a combinatorial definition of "equivalence" ”, Annals of Mathematics, 43 (1943), 223–243 | DOI | MR
[2] Shirshov A.I., “Some algorithmic issues for Lie algebras”, Siberian Mathematical Journal, 3:2 (1962), 292–296 (In Russ.) | Zbl
[3] Bokut' L.A., “Embeddings into simple associative algebras”, Algebra and Logic, 15:2 (1976), 73–90 (In Russ.) | MR | Zbl
[4] G. M. Bergman, “The diamond lemma for ring theory”, Advances in Mathematics, 29 (1978), 178–218 | DOI | MR
[5] T. Becker, V. Weispfenning, Gröbner Bases: A Computational Approach to Commutative Algebra, Springer-Verlag, New York, 1998, 576 pp. | MR
[6] H. Kneser, “Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 28 (1929), 248–260
[7] H. Schubert, “Die eindeutige Zerlegbarkeit eines Knotens in Primknoten”, S. B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 3 (1949), 57–104 | MR
[8] K. Miyazaki, “Conjugation and prime decomposition of knots in closed, oriented $3$-manifolds”, Transactions of the American Mathematical Society, 313 (1989), 785–804 | MR | Zbl
[9] S. Matveev, V. Turaev, “A semigroup of theta-curves in 3-manifolds”, Moscow Mathematical Journal, 4 (2011), 1–10 | MR