Mots-clés : HOMFLY polynomial
@article{CHFMJ_2019_4_3_a0,
author = {K. S. Asaulko and F. G. Korablev},
title = {On a {Yang~{\textemdash}} {Baxter} operator and the corresponding knots invariant},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {255--264},
year = {2019},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/}
}
K. S. Asaulko; F. G. Korablev. On a Yang — Baxter operator and the corresponding knots invariant. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 255-264. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/
[1] V. G. Turaev, “The Yang — Baxter equation and invariants of links”, Inventiones Mathematicae, 92 (1998), 527–553 | DOI | MR
[2] C. Kassel, V. G. Turaev, Braid Groups, Springer-Verlag, New York, 2008, X+338 pp. | MR | Zbl
[3] P. Freyd, D. Yetter, J. Hoste [et al.], “A new polynomial invariant of knots and links”, Bulletin of the American Mathematical Society, 12 (1985), 239–246 | DOI | MR | Zbl
[4] V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bulletin of the American Mathematical Society, 12 (1985), 103–111 | DOI | MR | Zbl
[5] J. W. Alexander, “A lemma on systems of knotted curves”, Proceedings of the National Academy of Sciences, 9 (1923), 93–95 | DOI | Zbl
[6] Matveev S.V., Fomenko A.T., Algorithmic and computer methods in three-dimensional topology, Moscow State University Publishing House, Moscow, 1991, 300 pp. (In Russ.)
[7] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge University Press, 2012, 520 pp. | MR | Zbl
[8] Table of Knot Invariants, (accessed 01.07.2019) http://www.indiana.edu/k̃notinfo/
[9] Table of Link Invariants, (accessed 01.07.2019) http://www.indiana.edu/l̃inkinfo
[10] H. Murakami, “Some metrics on classical knots”, Mathematische Annalen, 270:1 (1985), 35–45 | DOI | MR | Zbl