On a Yang~--- Baxter operator and the corresponding knots invariant
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 255-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to construction of a Yang — Baxter operator over two-dimensional vector space. Properties of the corresponding invariant of oriented knot and links are studied. An explicit form of the skein relation of this invariant is presented. It's proved, that this invariant is not a consequence of the HOMFLY polynomial. At the end of the paper the table of invariant's values for all oriented knots and links that admit diagrams with at most seven crossing points is given.
Keywords: Yang — Baxter operator, braid group, HOMFLY polynomial, knots invariant.
@article{CHFMJ_2019_4_3_a0,
     author = {K. S. Asaulko and F. G. Korablev},
     title = {On a {Yang~---} {Baxter} operator and the corresponding knots invariant},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {255--264},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/}
}
TY  - JOUR
AU  - K. S. Asaulko
AU  - F. G. Korablev
TI  - On a Yang~--- Baxter operator and the corresponding knots invariant
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 255
EP  - 264
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/
LA  - ru
ID  - CHFMJ_2019_4_3_a0
ER  - 
%0 Journal Article
%A K. S. Asaulko
%A F. G. Korablev
%T On a Yang~--- Baxter operator and the corresponding knots invariant
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 255-264
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/
%G ru
%F CHFMJ_2019_4_3_a0
K. S. Asaulko; F. G. Korablev. On a Yang~--- Baxter operator and the corresponding knots invariant. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 3, pp. 255-264. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_3_a0/

[1] V. G. Turaev, “The Yang — Baxter equation and invariants of links”, Inventiones Mathematicae, 92 (1998), 527–553 | DOI | MR

[2] C. Kassel, V. G. Turaev, Braid Groups, Springer-Verlag, New York, 2008, X+338 pp. | MR | Zbl

[3] P. Freyd, D. Yetter, J. Hoste [et al.], “A new polynomial invariant of knots and links”, Bulletin of the American Mathematical Society, 12 (1985), 239–246 | DOI | MR | Zbl

[4] V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bulletin of the American Mathematical Society, 12 (1985), 103–111 | DOI | MR | Zbl

[5] J. W. Alexander, “A lemma on systems of knotted curves”, Proceedings of the National Academy of Sciences, 9 (1923), 93–95 | DOI | Zbl

[6] Matveev S.V., Fomenko A.T., Algorithmic and computer methods in three-dimensional topology, Moscow State University Publishing House, Moscow, 1991, 300 pp. (In Russ.)

[7] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge University Press, 2012, 520 pp. | MR | Zbl

[8] Table of Knot Invariants, (accessed 01.07.2019) http://www.indiana.edu/k̃notinfo/

[9] Table of Link Invariants, (accessed 01.07.2019) http://www.indiana.edu/l̃inkinfo

[10] H. Murakami, “Some metrics on classical knots”, Mathematische Annalen, 270:1 (1985), 35–45 | DOI | MR | Zbl