A note on (asymptotically) Weyl-almost periodic properties of convolution products
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 195-206
Voir la notice de l'article provenant de la source Math-Net.Ru
The main aim of this paper is to investigate Weyl-$p$-almost periodic
properties and asymptotically Weyl-$p$-almost periodic
properties of convolution products. Obtained results were applied to the considering of the existence and the uniqueness of a solution with the appropriate properties for abstract fractional differential inclusions of some classes. In such a way, we continue several recent research studies of ours which do concern a similar problematic.
Keywords:
Weyl-$p$-almost periodic function, asymptotically Weyl-$p$-almost periodic function, convolution product.
@article{CHFMJ_2019_4_2_a5,
author = {V. E. Fedorov and M. Kosti\'c},
title = {A note on (asymptotically) {Weyl-almost} periodic properties of convolution products},
journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
pages = {195--206},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/}
}
TY - JOUR AU - V. E. Fedorov AU - M. Kostić TI - A note on (asymptotically) Weyl-almost periodic properties of convolution products JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 195 EP - 206 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/ LA - en ID - CHFMJ_2019_4_2_a5 ER -
V. E. Fedorov; M. Kostić. A note on (asymptotically) Weyl-almost periodic properties of convolution products. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/