A note on (asymptotically) Weyl-almost periodic properties of convolution products
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 195-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is to investigate Weyl-$p$-almost periodic properties and asymptotically Weyl-$p$-almost periodic properties of convolution products. Obtained results were applied to the considering of the existence and the uniqueness of a solution with the appropriate properties for abstract fractional differential inclusions of some classes. In such a way, we continue several recent research studies of ours which do concern a similar problematic.
Keywords: Weyl-$p$-almost periodic function, asymptotically Weyl-$p$-almost periodic function, convolution product.
@article{CHFMJ_2019_4_2_a5,
     author = {V. E. Fedorov and M. Kosti\'c},
     title = {A note on (asymptotically) {Weyl-almost} periodic properties of convolution products},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {195--206},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - M. Kostić
TI  - A note on (asymptotically) Weyl-almost periodic properties of convolution products
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 195
EP  - 206
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/
LA  - en
ID  - CHFMJ_2019_4_2_a5
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A M. Kostić
%T A note on (asymptotically) Weyl-almost periodic properties of convolution products
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 195-206
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/
%G en
%F CHFMJ_2019_4_2_a5
V. E. Fedorov; M. Kostić. A note on (asymptotically) Weyl-almost periodic properties of convolution products. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/

[1] Kostić M., “Weyl-almost periodic and asymptotically Weyl-almost periodic properties of solutions to linear and semilinear abstract Volterra integro-differential equations”, Mathematical Notes of North-Eastern Federal University, 25:2 (2018), 65–84 | MR

[2] Kostić M., Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press, Boca Raton, Fl., 2015, 458 pp. | MR

[3] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc., New York, 1999, 324 pp. | MR | Zbl

[4] Sviridyuk G.A., Fedorov V.E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators., VSP, Utrecht, Boston, 2003, 216 pp. | MR | Zbl

[5] Fedorov V.E., Borel L.V., “Solvability of loaded linear evolution equations with a degenerate operator at the derivative”, St. Petersburg Mathematical Journal, 26:3 (2015), 487–497 | DOI | MR | Zbl

[6] Fedorov V.E., Gordievskikh D.M., Plekhanova M.V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | MR | Zbl

[7] Kostić M., “Abstract degenerate fractional differential inclusions”, Applicable Analysis and Discrete Mathematics, 11:1 (2017), 39–61 | DOI | MR

[8] Fedorov V.E., Romanova E.A., Debbouche A., “Analytic in a sector resolving families of operators for degenerate evolution fractional equations”, Journal of Mathematical Sciences, 288 (2018), 380–394 | DOI

[9] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Derivatives and Integrals: Theory and Applications, Gordon and Breach, New York, 1993, 1006 pp. | MR

[10] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006, 541 pp. | MR | Zbl

[11] Mu J., Zhoa Y., Peng L., “Periodic solutions and $S$-asymptotically periodic solutions to fractional evolution equations”, Discrete Dynamics in Nature and Society, 2017, ID 1364532 (2017), pages | MR

[12] Kostić M., “Existence of generalized almost periodic and asymptotic almost periodic solutions to abstract Volterra integro-differential equations”, Electronic Journal of Differential Equations, 2017:239 (2017), 1–30 | MR

[13] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser/Springer Basel AG, Basel, 2001, 535 pp. | MR | Zbl

[14] Kostić M., “Generalized almost automorphic and generalized asymptotically almost automorphic solutions of abstract Volterra integro-differential inclusions”, Fractional Differential Calculus, 8 (2018), 255–284 | DOI | MR | Zbl

[15] Agarwal R., de Andrade B., Cuevas C., “On type of periodicity and ergodicity to a class of fractional order differential equations”, Advances in Difference Equations, 2010, ID 179750 (2010), 25 | MR

[16] Kostić M., “On generalized $C^{(n)}$-almost periodic solutions of abstract Volterra integro-differential equations”, Novi Sad Journal of Mathematics, 48:1 (2018), 73–91 | DOI | MR

[17] Cross R., Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998, 352 pp. | MR | Zbl