Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_2_a5, author = {V. E. Fedorov and M. Kosti\'c}, title = {A note on (asymptotically) {Weyl-almost} periodic properties of convolution products}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {195--206}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/} }
TY - JOUR AU - V. E. Fedorov AU - M. Kostić TI - A note on (asymptotically) Weyl-almost periodic properties of convolution products JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 195 EP - 206 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/ LA - en ID - CHFMJ_2019_4_2_a5 ER -
V. E. Fedorov; M. Kostić. A note on (asymptotically) Weyl-almost periodic properties of convolution products. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a5/
[1] Kostić M., “Weyl-almost periodic and asymptotically Weyl-almost periodic properties of solutions to linear and semilinear abstract Volterra integro-differential equations”, Mathematical Notes of North-Eastern Federal University, 25:2 (2018), 65–84 | MR
[2] Kostić M., Abstract Volterra Integro-Differential Equations, Taylor and Francis Group/CRC Press, Boca Raton, Fl., 2015, 458 pp. | MR
[3] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker Inc., New York, 1999, 324 pp. | MR | Zbl
[4] Sviridyuk G.A., Fedorov V.E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators., VSP, Utrecht, Boston, 2003, 216 pp. | MR | Zbl
[5] Fedorov V.E., Borel L.V., “Solvability of loaded linear evolution equations with a degenerate operator at the derivative”, St. Petersburg Mathematical Journal, 26:3 (2015), 487–497 | DOI | MR | Zbl
[6] Fedorov V.E., Gordievskikh D.M., Plekhanova M.V., “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | MR | Zbl
[7] Kostić M., “Abstract degenerate fractional differential inclusions”, Applicable Analysis and Discrete Mathematics, 11:1 (2017), 39–61 | DOI | MR
[8] Fedorov V.E., Romanova E.A., Debbouche A., “Analytic in a sector resolving families of operators for degenerate evolution fractional equations”, Journal of Mathematical Sciences, 288 (2018), 380–394 | DOI
[9] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Derivatives and Integrals: Theory and Applications, Gordon and Breach, New York, 1993, 1006 pp. | MR
[10] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006, 541 pp. | MR | Zbl
[11] Mu J., Zhoa Y., Peng L., “Periodic solutions and $S$-asymptotically periodic solutions to fractional evolution equations”, Discrete Dynamics in Nature and Society, 2017, ID 1364532 (2017), pages | MR
[12] Kostić M., “Existence of generalized almost periodic and asymptotic almost periodic solutions to abstract Volterra integro-differential equations”, Electronic Journal of Differential Equations, 2017:239 (2017), 1–30 | MR
[13] Arendt W., Batty C.J.K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser/Springer Basel AG, Basel, 2001, 535 pp. | MR | Zbl
[14] Kostić M., “Generalized almost automorphic and generalized asymptotically almost automorphic solutions of abstract Volterra integro-differential inclusions”, Fractional Differential Calculus, 8 (2018), 255–284 | DOI | MR | Zbl
[15] Agarwal R., de Andrade B., Cuevas C., “On type of periodicity and ergodicity to a class of fractional order differential equations”, Advances in Difference Equations, 2010, ID 179750 (2010), 25 | MR
[16] Kostić M., “On generalized $C^{(n)}$-almost periodic solutions of abstract Volterra integro-differential equations”, Novi Sad Journal of Mathematics, 48:1 (2018), 73–91 | DOI | MR
[17] Cross R., Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998, 352 pp. | MR | Zbl