Models of plane fractures expansion
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 165-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximate models of crack opening in the reservoir under the action of the filtered fluid are derived. The cross-sections of the fracture are assumed to be plane-parallel and have a small thickness. The models are based on exact solutions of the equations for viscous fluid motion including invariant solutions. Filtration of a fluid through a moving boundary, the absence of a tangential motion at the boundary, and elastic forces compressing the crack are taken into account.
Keywords: filtration, moving boundary, viscous fluid, exact solutions, fracture expansion.
@article{CHFMJ_2019_4_2_a3,
     author = {S. V. Khabirov and S. S. Khabirov},
     title = {Models of plane fractures expansion},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {165--178},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a3/}
}
TY  - JOUR
AU  - S. V. Khabirov
AU  - S. S. Khabirov
TI  - Models of plane fractures expansion
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 165
EP  - 178
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a3/
LA  - ru
ID  - CHFMJ_2019_4_2_a3
ER  - 
%0 Journal Article
%A S. V. Khabirov
%A S. S. Khabirov
%T Models of plane fractures expansion
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 165-178
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a3/
%G ru
%F CHFMJ_2019_4_2_a3
S. V. Khabirov; S. S. Khabirov. Models of plane fractures expansion. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 165-178. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a3/

[1] Barenblatt G.I., Entov V.I., Ryzhik V.M., Theory of nonstationary filtration of fluid and gas, Nauka Publ., Moscow, 1972, 288 pp. (In Russ.)

[2] Esipov D.V., Kuranakov D.S., Lapin V.N., Cherniy S.G., “Mathematical models of hydraulic fracturing”, Computational technologies, 19:5 (2013), 33–61 (In Russ.)

[3] Khristianovich S.A., Zheltov Yu.P., “On hydraulic fracturing of oil reservoir”, News of USSR Academy of Sciences. Technical Sciences Branch, 1955, no. 5, 3–41 (In Russ.)

[4] Barenblatt G.I., “On some problems of the theory of elasticity arising in the study of the mechanics of hydraulic fracturing of oil-bearing formation”, Applied mathematics and mechanics, 20:4 (1956), 475–486 (In Russ.)

[5] Barenblatt G.I., “On the formation of horizontal cracks during hydraulic fracturing of the oil reservoir”, News of USSR Academy of Sciences. Technical Sciences Branch, 1956, no. 9, 101–105 (In Russ.)

[6] J. Geertsma, F. de Klerk, “A rapid method of predicting width and extent of hydraulically induced fractures”, J. of Petroleum Technology, 21:12 (1969), 1571–1581

[7] . K. Perkins, L. R. Kern, “Widths of hydraulic fractures”, J. of Petroleum Technology, 13:9 (1961), 937–949

[8] G. R. Irwin, A. A. Wells, “A continuum-mechanics view of crack propagation”, Metallurgical Reviews., 10:1 (1965), 223–270

[9] R. P. Nordgren, “Propagation of a vertical hydraulic fracture”, Soc. of Petroleum Engineers J., 12:4 (1972), 306–314

[10] Khabirov S.V., Khabirov S.S., “Crack opening models based on the exact solutions of the Navier — Stokes equations”, Applied mathematics and technical physics, 60:2 (2019), 169–179 (In Russ.)

[11] Khabirov S.V., Khabirov S.S., “Self-similar elastic regime of filtration through moving boundary”, Multiphase systems, 13:2 (2018), 64–72 (In Russ.)

[12] Chirkunov Yu.A., Khabirov S.V., Symmetry analysis elements for continuum mechanics differential equations, Novosibirsk State Technical University, Novosibirsk, 2012, 659 pp. (In Russ.)

[13] Hartman P., Ordinary differential equations, John Wiley Sons, New York, London, Sydney,, 1964, 720 pp.