Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_2_a1, author = {V. N. Pavlenko and E. Yu. Postnikova}, title = {Sturm~--- {Liouville} problem for an equation with a discontinuous nonlinearity}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {142--154}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a1/} }
TY - JOUR AU - V. N. Pavlenko AU - E. Yu. Postnikova TI - Sturm~--- Liouville problem for an equation with a discontinuous nonlinearity JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 142 EP - 154 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a1/ LA - ru ID - CHFMJ_2019_4_2_a1 ER -
%0 Journal Article %A V. N. Pavlenko %A E. Yu. Postnikova %T Sturm~--- Liouville problem for an equation with a discontinuous nonlinearity %J Čelâbinskij fiziko-matematičeskij žurnal %D 2019 %P 142-154 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a1/ %G ru %F CHFMJ_2019_4_2_a1
V. N. Pavlenko; E. Yu. Postnikova. Sturm~--- Liouville problem for an equation with a discontinuous nonlinearity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 2, pp. 142-154. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_2_a1/
[1] H. Herbert, “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR | Zbl
[2] Shragin I.E., “Conditions for measurability of superpositions”, Reports of USSR Academy of Sciences, 197:2 (1971), 295–298 (In Russ.) | MR | Zbl
[3] Goldshtik A.V., “A mathematical model of discontinuous incompressible fluid flows”, Reports of USSR Academy of Sciences, 147:6 (1962), 1310–1313 (In Russ.)
[4] P. Nistri, “Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity”, Proc. of the Royal Soc. of Edinburgh. Section A: Mathematics, 83:1–2 (1979), 133–145 | DOI | MR | Zbl
[5] Potapov D.K., “Sturm — Liouville’s problem with discontinuous nonlinearity”, Differential Equations, 50:9 (2014), 1272–1274 | DOI | DOI | MR | Zbl
[6] Potapov D.K., “Existence of solutions, estimates for the differential operator, and a “separating” set in a boundary value problem for a second-order differential equation with a discontinuous nonlinearity”, Differential Equations, 51:7 (2015), 967–972 | DOI | DOI | MR | Zbl
[7] S. Bensid, J. Diaz, “Stability results for discontinuous nonlinear elliptic and parabolic problems with a $S$-shaped bifurcation branch of stationary solutions”, Discrete and Continuous Dynamical Systems. Ser. B., 22:5 (2017), 1757–1778 | DOI | MR | Zbl
[8] Pavlenko V.N., Potapov D.K., “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Sbornik: Mathematics, 208:1 (2017), 157–172 | DOI | DOI | MR | Zbl
[9] Krasnosel'skii M.A., Pokrovskii A.V., Systems with Hysteresis, Springer-Verlag, Berlin, Heidelberg, 1989, 410 pp. | MR
[10] Pavlenko V.N., “The existence of solutions for nonlinear equations with discontinuous monotone operators”, Bulletin of Moscow State University. Series 1. Mathematics. Mechanics, 1973, no. 6, 21–29 (In Russ.) | Zbl
[11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984, 513 pp. | MR
[12] Pavlenko V.N., Ul'yanova O.V., “The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities”, Russian Mathematics, 42:11 (1998), 65–72 | MR | Zbl
[13] Krasnosel'skii M.A., Positive Solutions of Operator Equations, P. Noordhoff, Groningen, 1964, 381 pp. | MR | Zbl