Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_1_a9, author = {A. E. Svirid and A. V. Luk{\textquoteright}yanov and V. V. Makarov and V. G. Pushin and A. N. Uksusnikov}, title = {Effect of thermomechanical treatment on the structural, phase transformations and properties of the {Cu~---} {Al~---} {Ni} shape memory alloys}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {108--117}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a9/} }
TY - JOUR AU - A. E. Svirid AU - A. V. Luk’yanov AU - V. V. Makarov AU - V. G. Pushin AU - A. N. Uksusnikov TI - Effect of thermomechanical treatment on the structural, phase transformations and properties of the Cu~--- Al~--- Ni shape memory alloys JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2019 SP - 108 EP - 117 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a9/ LA - ru ID - CHFMJ_2019_4_1_a9 ER -
%0 Journal Article %A A. E. Svirid %A A. V. Luk’yanov %A V. V. Makarov %A V. G. Pushin %A A. N. Uksusnikov %T Effect of thermomechanical treatment on the structural, phase transformations and properties of the Cu~--- Al~--- Ni shape memory alloys %J Čelâbinskij fiziko-matematičeskij žurnal %D 2019 %P 108-117 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a9/ %G ru %F CHFMJ_2019_4_1_a9
A. E. Svirid; A. V. Luk’yanov; V. V. Makarov; V. G. Pushin; A. N. Uksusnikov. Effect of thermomechanical treatment on the structural, phase transformations and properties of the Cu~--- Al~--- Ni shape memory alloys. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 108-117. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a9/
[1] (In Russ.)
[2] S. Miyazaki, T. Kawai, K. Otsuka, “On the origin of intergranular fracture in $\beta$ phase shape memory alloys”, Scripta Metallurgica, 16:4 (1982), 431–436 | DOI
[3] Likhachev V.A., Kuzmin S.L., Kamentseva Z.P., The effect of shape memory, Leningrad State University, Leningrad, 1987, 218 pp. (In Russ.)
[4] Otsuka K., Shimidzu K., Suzuki Yu., et al., Alloys with shape memory effect, Metallurgiya Publ., Moscow, 1990, 224 pp. (In Russ.)
[5] Y. S. Sun, G. W. Lorimer, N. Ridley, “Microstructure and its development in Cu-Al-Ni alloys”, Metallurgical Transactions A., 21:2 (1990), 575–588 | DOI
[6] Khachin V.N., Pushin V.G., Kondratiev V.V., Nickel Titanium: Structure and properties, Nauka Publ., Moscow, 1992, 160 pp. (In Russ.)
[7] V.A. Likhachev (ed.), Materials with shape memory effect, in 4 volumes, Research Institute of Chemistry of Saint-Petersburg State University, Saint-Petersburg, 1997, 1998 (In Russ.)
[8] Pushin V.G., Kondratiev V.V., Khachin V.N., Pretransitional phenomena and martensite transformations, Ural Branch of Russian Academy of Sciences, Yekaterinburg, 1998, 368 pp. (In Russ.)
[9] K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1999, 284 pp.
[10] P. Sedlak, H. Steiner, M. Landa, V. Novak, P. Sittner, L. I. Manosa, “Elastic constants of bcc austenite and 2H orthorhombic martensite in Cu-Al-Ni shape memory alloy”, Acta Materialia, 53:13 (2005), 3643–3661 | DOI
[11] L. A. Matlakhova, E. C. Pereira, A. N. Matlakhov, S. N. Monteiro, R. Toledo, “Mechanical behavior and fracture characterization of a monocrystalline Cu–Al–Ni subjected to thermal cycling treatments under load”, Materials Characterization, 59:11 (2008), 1630–1637 | DOI
[12] J. San Juan, M. L. No, C. A. Schuh, “Superelastic cycling of Cu–Al–Ni shape memory alloy micropillars”, Acta Materialia, 60:10 (2012), 4093–4106 | DOI
[13] N. Resnina, V. Rubanik (eds.), Shape memory alloys: properties, technologies, opportunities, Trans Tech Publication Ltd, Switzerland, 2015, 645 pp.