Dirac star in $R^2$ gravity
Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 76-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary compact strongly gravitating configurations supported by two spinor fields are studied. The latter are described by a special ansatz permitting the obtaining of spherically symmetric solutions with a diagonal energy-momentum tensor. The consideration is carried out within the framework of the theories of Einstein’s gravity and modified $R^2$ gravity. In both theories, we obtain regular asymptotically flat solutions describing objects with finite masses and sizes. The dependencies of the mass of the configurations under investigation on the oscillation energy of the spinor fields are constructed. The distributions of the metric functions and the spinor fields along the radius of the systems are calculated. The distinctions in physical characteristics of the obtained configurations appearing due to the modification of the gravity are revealed.
Keywords: spinor field, compact gravitating configurations, modified gravity.
@article{CHFMJ_2019_4_1_a6,
     author = {N. M. Bakirova and E. M. Bakirova and V. N. Folomeev},
     title = {Dirac star in $R^2$ gravity},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/}
}
TY  - JOUR
AU  - N. M. Bakirova
AU  - E. M. Bakirova
AU  - V. N. Folomeev
TI  - Dirac star in $R^2$ gravity
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2019
SP  - 76
EP  - 86
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/
LA  - ru
ID  - CHFMJ_2019_4_1_a6
ER  - 
%0 Journal Article
%A N. M. Bakirova
%A E. M. Bakirova
%A V. N. Folomeev
%T Dirac star in $R^2$ gravity
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2019
%P 76-86
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/
%G ru
%F CHFMJ_2019_4_1_a6
N. M. Bakirova; E. M. Bakirova; V. N. Folomeev. Dirac star in $R^2$ gravity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/

[1] S. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations, Cambridge University Press, Cambridge, 2010, 491 pp. | Zbl

[2] F. E. Schunck, E. W. Mielke, “General relativistic boson stars”, Classical Quantum Gravity, 20 (2003), R301–R356 | DOI | MR | Zbl

[3] R. Bartnik, J. Mckinnon, “Particle-like solutions of the Einstein — Yang — Mills equations”, Physical Review Letters, 61 (1988), 141–144 | DOI | MR

[4] R. Brito, V. Cardoso, C. A. R. Herdeiro, E. Radu, “Proca stars: gravitating Bose — Einstein condensates of massive spin 1 particles”, Physics Letters, B752 (2016), 291–295 | DOI

[5] F. Finster, J. Smoller, S. T. Yau, “Particle-like solutions of the Einstein — Dirac equations”, Physical Review, D59:104020 (1999) | MR

[6] C. A. R. Herdeiro, A. M. Pombo, E. Radu, “Asymptotically flat scalar, Dirac and Proca stars: discrete vs. continuous families of solutions”, Physics Letters, B773 (2017), 654–662 | DOI

[7] A. De Felice, S. Tsujikawa, “$f(R)$ Theories”, Living Reviews in Relativity, 13, no. 3

[8] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Physics Reports, 505:59–144 (2011) | MR

[9] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and latetime evolution”, Physics Reports, 692 (2017), 1–104. | DOI | MR | Zbl

[10] E. Babichev, D. Langlois, “Relativistic stars in $f(R)$ and scalar-tensor theories”, Physical Review, D81:124051 (2010)

[11] A. Cooney, S. DeDeo, D. Psaltis, “Neutron stars in $f(R)$ gravity with perturbative constraints”, Physical Review, D82 (2010), 064033

[12] A. S. Arapoglu, C. Deliduman, K. Y. Eksi, “Constraints on perturbative $f(R)$ gravity via neutron Stars”, Journal of Cosmology and Astroparticle Physics, 1107:020 (2011)

[13] M. Orellana, F. Garcia, F. A. Teppa Pannia, G. E. Romero, “Structure of neutron stars in $R$-squared gravity”, General Relativity and Gravitation, 45 (2013), 771–783 | DOI | MR | Zbl

[14] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Further stable neutron star models from $f(R)$ gravity”, Journal of Cosmology and Astroparticle Physics, 1312:040 (2013)

[15] A. Ganguly, R. Gannouji, R. Goswami, S. Ray, “Neutron stars in the Starobinsky model”, Physical Review, D89:064019 (2014)

[16] S. Capozziello, M. De Laurentis, R. Farinelli, S. D. Odintsov, “Mass-radius relation for neutron stars in $f(R)$ gravity”, Physical Review, D93 (2016), 023501 | MR

[17] A. V. Astashenok, S. D. Odintsov, A. de la Cruz-Dombriz, “The realistic models of relativistic stars in $f(R) = R + \alpha R^2$ gravity”, Classical Quantum Gravity, 34:205008 (2017) | MR | Zbl

[18] V. Folomeev, “Anisotropic neutron stars in $R^2$ gravity”, Physical Review, D97:124009 (2018) | MR

[19] I. Lawrie, A unified grand tour of theoretical physics, Institute of Physics Publ., Bristol–Philadelphia, 2002, 564 pp. | MR

[20] V. Dzhunushaliev, V. Folomeev, Energy spectrum and the mass gap from nonpertur-bative quantization à la Heisenberg, Accessed 08.10.2018, arXiv: 1805.10566 | MR

[21] J. Naf, P. Jetzer, “On the $1/c$ expansion of $f(R)$ gravity”, Physical Review, D81:104003 (2010)

[22] M. Colpi, S. L. Shapiro, I. Wasserman, “Boson stars: gravitational equilibria of selfinteracting scalar fields”, Physical Review Letters, 57 (1986), 2485–2488 | DOI | MR

[23] M. Gleiser, R. Watkins, “Gravitational stability of scalar matter”, Nuclear Physics, B319 (1989), 733–746 | DOI