Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2019_4_1_a6, author = {N. M. Bakirova and E. M. Bakirova and V. N. Folomeev}, title = {Dirac star in $R^2$ gravity}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {76--86}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/} }
N. M. Bakirova; E. M. Bakirova; V. N. Folomeev. Dirac star in $R^2$ gravity. Čelâbinskij fiziko-matematičeskij žurnal, Tome 4 (2019) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/CHFMJ_2019_4_1_a6/
[1] S. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations, Cambridge University Press, Cambridge, 2010, 491 pp. | Zbl
[2] F. E. Schunck, E. W. Mielke, “General relativistic boson stars”, Classical Quantum Gravity, 20 (2003), R301–R356 | DOI | MR | Zbl
[3] R. Bartnik, J. Mckinnon, “Particle-like solutions of the Einstein — Yang — Mills equations”, Physical Review Letters, 61 (1988), 141–144 | DOI | MR
[4] R. Brito, V. Cardoso, C. A. R. Herdeiro, E. Radu, “Proca stars: gravitating Bose — Einstein condensates of massive spin 1 particles”, Physics Letters, B752 (2016), 291–295 | DOI
[5] F. Finster, J. Smoller, S. T. Yau, “Particle-like solutions of the Einstein — Dirac equations”, Physical Review, D59:104020 (1999) | MR
[6] C. A. R. Herdeiro, A. M. Pombo, E. Radu, “Asymptotically flat scalar, Dirac and Proca stars: discrete vs. continuous families of solutions”, Physics Letters, B773 (2017), 654–662 | DOI
[7] A. De Felice, S. Tsujikawa, “$f(R)$ Theories”, Living Reviews in Relativity, 13, no. 3
[8] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Physics Reports, 505:59–144 (2011) | MR
[9] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and latetime evolution”, Physics Reports, 692 (2017), 1–104. | DOI | MR | Zbl
[10] E. Babichev, D. Langlois, “Relativistic stars in $f(R)$ and scalar-tensor theories”, Physical Review, D81:124051 (2010)
[11] A. Cooney, S. DeDeo, D. Psaltis, “Neutron stars in $f(R)$ gravity with perturbative constraints”, Physical Review, D82 (2010), 064033
[12] A. S. Arapoglu, C. Deliduman, K. Y. Eksi, “Constraints on perturbative $f(R)$ gravity via neutron Stars”, Journal of Cosmology and Astroparticle Physics, 1107:020 (2011)
[13] M. Orellana, F. Garcia, F. A. Teppa Pannia, G. E. Romero, “Structure of neutron stars in $R$-squared gravity”, General Relativity and Gravitation, 45 (2013), 771–783 | DOI | MR | Zbl
[14] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Further stable neutron star models from $f(R)$ gravity”, Journal of Cosmology and Astroparticle Physics, 1312:040 (2013)
[15] A. Ganguly, R. Gannouji, R. Goswami, S. Ray, “Neutron stars in the Starobinsky model”, Physical Review, D89:064019 (2014)
[16] S. Capozziello, M. De Laurentis, R. Farinelli, S. D. Odintsov, “Mass-radius relation for neutron stars in $f(R)$ gravity”, Physical Review, D93 (2016), 023501 | MR
[17] A. V. Astashenok, S. D. Odintsov, A. de la Cruz-Dombriz, “The realistic models of relativistic stars in $f(R) = R + \alpha R^2$ gravity”, Classical Quantum Gravity, 34:205008 (2017) | MR | Zbl
[18] V. Folomeev, “Anisotropic neutron stars in $R^2$ gravity”, Physical Review, D97:124009 (2018) | MR
[19] I. Lawrie, A unified grand tour of theoretical physics, Institute of Physics Publ., Bristol–Philadelphia, 2002, 564 pp. | MR
[20] V. Dzhunushaliev, V. Folomeev, Energy spectrum and the mass gap from nonpertur-bative quantization à la Heisenberg, Accessed 08.10.2018, arXiv: 1805.10566 | MR
[21] J. Naf, P. Jetzer, “On the $1/c$ expansion of $f(R)$ gravity”, Physical Review, D81:104003 (2010)
[22] M. Colpi, S. L. Shapiro, I. Wasserman, “Boson stars: gravitational equilibria of selfinteracting scalar fields”, Physical Review Letters, 57 (1986), 2485–2488 | DOI | MR
[23] M. Gleiser, R. Watkins, “Gravitational stability of scalar matter”, Nuclear Physics, B319 (1989), 733–746 | DOI