Structure of hybrid carbon phases formed from the hexagonal graphene
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 486-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

As a result of the theoretical analysis of the formation of sp${}^2$ + sp${}^3$ hybrid carbon phases structures on the basis of the hexagonal graphene layers, it is established that eight basic structural types of such compounds can be formed. In these polymorphic varieties all three- and four-coordinated atoms are in equivalent structural positions. The structure of the new carbon phases has been geometrically optimized by molecular mechanics MM+. As a result of the performed calculations, the structural parameters of hybrid phases were found. The crystal lattice of the phases belong to the hexagonal, orthorhombic, monoclinic or triclinic symmetry. Their elementary cells contain 6, 12 or 18 atoms. Phase density varies from 2.97 to 3.65 g/cm${}^3$. In six phases, the number of sp${}^3$ hybridized atoms is twice as large as the number of atoms in the state of sp${}^2$ hybridization, and in the other two phases, on the contrary, sp${}^2$ atoms are twice as large as sp${}^3$. The values of the lengths of interatomic bonds and the angles between them differ from the values typical for both graphite and diamond. The values of deformation parameters characterize the degree of difference between the structural states of atoms in hybrid phases and the states in graphite and diamond are minimal for the phases L${}_6$a7 and L${}_6$a8.
Keywords: graphene, hybridization, computer simulation, polymorphism, crystal structure.
@article{CHFMJ_2018_3_4_a8,
     author = {M. I. Tingayev and E. A. Belenkov},
     title = {Structure of hybrid carbon phases formed from the hexagonal graphene},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {486--497},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a8/}
}
TY  - JOUR
AU  - M. I. Tingayev
AU  - E. A. Belenkov
TI  - Structure of hybrid carbon phases formed from the hexagonal graphene
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 486
EP  - 497
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a8/
LA  - ru
ID  - CHFMJ_2018_3_4_a8
ER  - 
%0 Journal Article
%A M. I. Tingayev
%A E. A. Belenkov
%T Structure of hybrid carbon phases formed from the hexagonal graphene
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 486-497
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a8/
%G ru
%F CHFMJ_2018_3_4_a8
M. I. Tingayev; E. A. Belenkov. Structure of hybrid carbon phases formed from the hexagonal graphene. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 486-497. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a8/

[1] Belenkov E.A., Greshnyakov V.A., “Classification of structural modifications of carbon”, Physics of the Solid State, 55:8 (2013), 1754–1764 | DOI

[2] E. A. Belenkov, V. A. Greshnyakov, “Classification schemes of carbon phases and nanostructures”, New Carbon Materials, 28:4 (2013), 273–283 | DOI

[3] Belenkov E.A., Ivanovskaya V.V., Ivanovskii A.L., Nanodiamonds and related carbon materials, Ural Branch of RAS, Ekaterinburg, 2008, 169 pp. (In Russ.)

[4] M. Nunez-Regueiro, P. Monceau, A. Rassat [et al.], “Absence of a metallic phase at high pressures in C${}_{60}$”, Nature, 354 (1991), 289–291 | DOI

[5] Brazhkin V.V., Lyapin A.G, Antonov Yu.V. [et al.]., “Amorphization of fullerite (C${}_{60}$0) at high pressures”, JETP Letters, 62:4 (1995), 350–354

[6] M. J. Bucknum, R. Hoffmann, “Hypothetical dense 3,4-connected carbon net and related B${}_2$C and CN${}_2$ nets built from 1,4-cyclohexadienoid units”, Journal of American Chemical Society, 116:25 (1994), 11456–11464 | DOI

[7] A. Kuc, G. Seifert, “Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes”, Physical Review B, 74 (2006), 214104 | DOI

[8] Belenkov E.A., Ivanovskii A.L., Ul’yanov S.N, Shabiev F.K., “New framework nanostructures of carbon atoms in sp${}^2$ and sp${}^3$ hybridized states”, Journal of Structural Chemistry, 46:6 (2005), 961–967 | DOI

[9] N. Park, K. Park, M. H. Lee, J. Ihm, “Electronic structure and mechanical properties of graphitic triclinic and honeycomb lattices”, Journal of the Korean Physical Society, 37:2 (2000), 129–133 | MR

[10] Belenkov E.A., Tingaev M.I., “Structure of new sp${}^2$+sp${}^3$ hybrid carbon phases by means of alignmenting of armchair single-walled carbon nanotubes”, Letters on Materials, 5:1 (2015), 15–19 (In Russ.)

[11] M. I. Tingaev, E. A. Belenkov, “Hybrid sp${}^2$+sp${}^3$ carbon phases created from carbon nanotubes”, IOP Journal of Physics: Conference Series, 917 (2017), 032013 | DOI

[12] Tingaev M.I., Berezin V.M., Belenkov E.A., “Computation of structure and electronic properties of hybrid phase formed by polymerization of C${}_{20}$ fullerenes”, Chelyabinsk Physical and Mathematical Journal, 2:4 (2017), 489–496 (In Russ.)

[13] U. Berkert, N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, 1982, 340 pp.

[14] J.-H. Lii, S. Gallion, C. Bender [et al.], “Molecular mechanics (MM2) calculations on peptides and on the protein Crambin using the CYBER 205”, Journal of Computational Chemistry., 10:4 (1989), 503–513 | DOI

[15] H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications, Noyes Publ., Park Ridge, New Jersey, 1993, 402 pp.

[16] L. Bai, N. Srikanth, E. A. Korznikova [et al.], “Wear and friction between smooth or rough diamond-like carbon films and diamond tips”, Wear, 372–373 (2017), 12–20 | DOI