Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_4_a4, author = {Ya. I. Petrukhin}, title = {Natural deduction systems for some modifications of {Kleene's} and {Dunn~---} {Belnap's} logics}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {438--452}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a4/} }
TY - JOUR AU - Ya. I. Petrukhin TI - Natural deduction systems for some modifications of Kleene's and Dunn~--- Belnap's logics JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 438 EP - 452 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a4/ LA - ru ID - CHFMJ_2018_3_4_a4 ER -
Ya. I. Petrukhin. Natural deduction systems for some modifications of Kleene's and Dunn~--- Belnap's logics. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 438-452. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a4/
[1] S. C. Kleene, “On a notation for ordinal numbers”, Journal of Symbolic Logic, 3:4 (1938), 150–155 | DOI | MR
[2] F. G. Asenjo, “A calculus of antinomies”, Notre Dame Journal of Formal Logic, 7:1 (1966), 103–105 | DOI | MR | Zbl
[3] G. Priest, “The logic of paradox”, Journal of Philosophical Logic, 8:1 (1979), 219–241 | DOI | MR | Zbl
[4] G. Priest, “Paraconsistent logic”, Handbook of Philosophical Logic, v. 6, 2, eds. M. Gabbay, F. Guenthner, Kluwer, Dordrecht, 2002, 287–393 | DOI | MR
[5] Finn V.K., “Axiomatization of some three-valued propositional calculi and their algebras”, Philosophy in the contemporary world. Philosophy and logic, 1974, 398–438 (In Russ.)
[6] S. Halldén, The logic of nonsense, Uppsala Universitets Arskrift, Uppsala, 1949, 132 pp. | Zbl
[7] S. Bonzio, J. Gil-Férez, F. Paoli, L. Peruzzi, “On paraconsistent weak Kleene logic: axiomatisation and algebraic analysis”, Studia Logica, 105:2 (2017), 253–297 | DOI | MR | Zbl
[8] Kleene S.C., Introduction to Metamathematics, D. Van Nostrand Company, Inc., New York, Toronto, 1952, X + 550 pp. | MR | MR
[9] Komendantskaya E.Y., “Functional interdependence of regular Kleene logics”, Logical investigations, 15 (2009), 116–128 (In Russ.)
[10] M. Fitting, “Kleene's three valued logics and their children”, Fundamenta informaticae, 20:1–3 (1994), 113–131 | MR | Zbl
[11] Y. Petrukhin, “Natural deduction for three-valued regular logics”, Logic and Logical Philosophy, 26:2 (2017), 197–206 | MR | Zbl
[12] Petrukhin Y.I., Shangin V.O., “Correspondence analysis for paraconsistent weak Kleene logic”, Moscow University Philosophical Bulletin, 2017, no. 6, 52–62 (In Russ.)
[13] B. Kooi, A. Tamminga, “Completeness via correspondence for extensions of the logic of paradox”, The Review of Symbolic Logic, 5:4 (2012), 720–730 | DOI | MR | Zbl
[14] A. Tamminga, “Correspondence analysis for strong three-valued logic”, Logical Investigations, 20 (2014), 255–268 | MR | Zbl
[15] N. D. Belnap, “Tautological entailments”, Journal of Symbolic Logic, 24:4 (1959), 316
[16] A. R. Anderson, N. D. Belnap, “Tautological entailments”, Philosophical Studies, 13:1–2 (1962), 9–24 | DOI | MR
[17] J. M. Dunn, The Algebra of Intensional Logics, Doctoral Dissertation, University of Pittsburgh, Pittsburgh, 1966
[18] J. M. Dunn, “Intuitive semantics for first-degree entailment and coupled trees”, Philosophical Studies, 29:3 (1976), 149–168 | DOI | MR | Zbl
[19] N. D. Belnap, “A useful four-valued logic”, Modern Uses of Multiple-Valued Logic, eds. J. M. Dunn, G. Epstein, Reidel Publishing Company, Boston, 1977, 8–37 | MR
[20] N. D. Belnap, “How a computer should think”, Contemporary Aspects of Philosophy, ed. G. Rule, Oriel Press, Stocksfield, 1977, 30–55
[21] J. M. Font, “Belnap's four-valued logic and de Morgan lattices”, Logic Journal of the IGPL, 5:3 (1997), 1–29 | DOI | MR
[22] Zaitsev D.V., Shramko Y.V., “Logical entailment and designated values”, Logical Investigations, 2004, no. 11, 126–137 (In Russ.)
[23] M. L. Ginsberg, “Multivalued logics”, Proceedings of the Fifth National Conference on Artificial Intelligence, Morgan Kaufmann Publ., 1986, 243–247
[24] M. L. Ginsberg, “Multivalued logics: a uniform approach to reasoning in artificial intelligence”, Computational Intelligence, 4:3 (1988), 265–316 | DOI | MR
[25] M. Fitting, “Negation as refutation”, Proceedings of the Fourth Annual Symposium on Logic in Computer Science, IEEE Press Piscataway, New Jersey, 1989, 63–70 | DOI
[26] M. Fitting, “Kleene's logic, generalized”, Journal of Logic and Computation, 1:6 (1992), 797–810 | DOI | MR
[27] Tomova N.E., “On four-valued regular logics”, Logical investigations, 15 (2009), 223–228 (In Russ.) | Zbl
[28] Y. Petrukhin, “Natural deduction for four-valued both regular and monotonic logics”, Logic and Logical Philosophy, 27:1 (2018), 53–66 | MR | Zbl
[29] Y. I. Petrukhin, “Natural deduction for Fitting’s four-valued generalizations of Kleene’s logics”, Logica Universalis, 11:4 (2017), 525–532 | DOI | MR | Zbl
[30] Petrukhin Y.I., “Natural deduction for Yuriev's logic”, Chelyabinsk Physical and Mathematical Journal, 2:1 (2017), 46–52 (In Russ.) | MR
[31] Y. I. Petrukhin, “Sorrespondence analysis for logic of rational agent”, Chelyab. fiz.-mat. zhurn, 2:3 (2017), 329–337 | MR
[32] V. O. Shangin, “A precise definition of an inference (by the example of natural deduction systems for logics $I_{\langle\alpha,\beta\rangle}$)”, Logical Investigations, 23:1 (2017), 83–104 | DOI | MR | Zbl
[33] L. Henkin, “The completeness of the first-order functional calculus”, Journal of Symbolic Logic, 14:3 (1949), 159–166 | DOI | MR | Zbl