Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_4_a3, author = {Yu. L. Nosov}, title = {Maximal outerplane graphs of extremal diameter}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {421--437}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a3/} }
Yu. L. Nosov. Maximal outerplane graphs of extremal diameter. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 4, pp. 421-437. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_4_a3/
[1] Evstigneev V.A., Dictionary of graphs in computer science, Siberian Scientific Publishing House, Novosibirsk, 2009, 300 pp. | MR
[2] Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969, 274 pp. | MR | Zbl
[3] A. S. Asratian, N. Oksimets, “Graphs with hamiltonian balls”, The Australian Journal of Combinatorics, 17:4 (1998), 185–198 | MR | Zbl
[4] A. Proskurowski, “Subgraphs in $k$-trees: cables and caterpillars”, Discrete Mathematics, 49:5 (1984), 275–278 | DOI | MR
[5] M. Markov, “On the vertex separation of maximal outerplanar graphs”, Serdica Journal of Computing, 154:5 (2008), 207–238 | MR
[6] A. M. Farley, A. Proskurowski, “Computation of the center and diameter of outerplanar graphs”, Discrete Applied Mathematics, 2:3 (1980), 185–191 | DOI | MR | Zbl
[7] S. J. Cyvin, E. K. Lloyd, B. N. Cyvin, J. Brunvoll, “Chemical relevance of a pure combinatorial problem: isomers of conjugated polyenes”, Structural Chemistry, 7:3 (1996), 183–186 | DOI
[8] P. F. Felzenszwalb, “Representation and detection of deformable shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:2 (2005), 208–220 | DOI
[9] F. R. F. Chung, “Diameters of graphs: old problems and new results”, Congressus Numerantium, 60:2 (1987), 295–317 | MR | Zbl
[10] Nosov Yu.L., “The Wiener index of maximal outerplane graphs”, Applied discrete mathematics, 26:4 (2014), 112–122 (In Russ.)
[11] Nosov Yu.L., “Maximal outerplane graphs with two simplicial vertices”, Applied discrete mathematics, 29:3 (2015), 95–109 (In Russ.)
[12] Dobrynin A.A., Gutman I., “The Wiener index for trees and graphs of hexagonal systems”, Discrete analysis and operations research. Ser. 2, 5:2 (1998), 34–60 (In Russ.) | MR | Zbl