Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 344-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop an algorithm for searching of pores in the condensed phase and determination of their sizes from the set of coordinates of the atomic centers obtained as a result of the molecular dynamics simulation. The algorithm is based on dividing the simulation cell into subcells with dimensions less than the average interatomic distance; the subcells are considered empty or filled depending on the distances to the centers of the nearest atoms. The algorithm is tested and applied for analyzing the size distribution of cavities in aluminum melt under high rate tension at the strain rate of 100/ns at the temperature of 1100 K. It is shown that at early stages of pore formation and growth, the size distribution of pores is close to the exponential one; the deviation from the exponential distribution occurs for largest pores.
Keywords: molecular-dynamic simulations, condensed matter, cavities, size distribution, high rate tension.
@article{CHFMJ_2018_3_3_a7,
     author = {A. E. Mayer and P. N. Mayer},
     title = {Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {344--352},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/}
}
TY  - JOUR
AU  - A. E. Mayer
AU  - P. N. Mayer
TI  - Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 344
EP  - 352
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/
LA  - ru
ID  - CHFMJ_2018_3_3_a7
ER  - 
%0 Journal Article
%A A. E. Mayer
%A P. N. Mayer
%T Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 344-352
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/
%G ru
%F CHFMJ_2018_3_3_a7
A. E. Mayer; P. N. Mayer. Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 344-352. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/

[1] Y. Tang, E. M. Bringa, M. A. Meyers, “Ductile tensile failure in metals through initiation and growth of nanosized voids”, Acta Materialia, 60 (2012), 4856–4865 | DOI

[2] A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, A. V. Yanilkin, “Theory and molecular dynamics modeling of spall fracture in liquids”, Physical Review B., 82 (2010), 174101 | DOI

[3] A. Kuksin, G. Norman, V. Stegailov, A. Yanilkin, P. Zhilyaev, “Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum”, International Journal of Fracture, 162 (2010), 127–136 | DOI | Zbl

[4] V. V. Pogorelko, A. E. Mayer, “Influence of titanium and magnesium nanoinclusions on the strength of aluminum at high-rate tension: Molecular dynamics simulations”, Materials Science and Engineering: A., 662 (2016), 227–240 | DOI

[5] A. E. Mayer, A. A. Ebel, “Influence of free surface nanorelief on the rear spallation threshold: Molecular dynamics investigation”, Journal of Applied Physics, 120:16 (2016), 165903 | DOI

[6] E. N. Hahn, T. C. Germann, R. Ravelo, J. E. Hammerberg, M. A. Meyers, “On the ultimate tensile strength of tantalum”, Acta Materialia, 126 (2017), 313–328 | DOI

[7] Y. Cai, H. A. Wu, S. N. Luo, “Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids”, The Journal of Chemical Physics, 140 (2014), 214317 | DOI

[8] A. E. Mayer, P. N. Mayer, “Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals”, Journal of Applied Physics, 118:3 (2015), 035903 | DOI

[9] P. N. Mayer, A. E. Mayer, “Late stages of high rate tension of aluminum melt: Molecular dynamic simulation”, Journal of Applied Physics, 120:7 (2016), 075901 | DOI

[10] A. Stukowski, “Computational analysis methods in atomistic modeling of crystals”, JOM, 66:3 (2014), 399–407 | DOI | MR

[11] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18 (2010), 015012 | DOI

[12] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | MR | Zbl

[13] R. R. Zope, Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti-Al system”, Physical Review B., 68 (2003), 024102 | DOI | MR

[14] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B., 29 (1984), 6443 | DOI