Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_3_a7, author = {A. E. Mayer and P. N. Mayer}, title = {Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {344--352}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/} }
TY - JOUR AU - A. E. Mayer AU - P. N. Mayer TI - Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 344 EP - 352 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/ LA - ru ID - CHFMJ_2018_3_3_a7 ER -
%0 Journal Article %A A. E. Mayer %A P. N. Mayer %T Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 344-352 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/ %G ru %F CHFMJ_2018_3_3_a7
A. E. Mayer; P. N. Mayer. Algorithm for analysis of pore size distribution based on results of molecular dynamic simulations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 344-352. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a7/
[1] Y. Tang, E. M. Bringa, M. A. Meyers, “Ductile tensile failure in metals through initiation and growth of nanosized voids”, Acta Materialia, 60 (2012), 4856–4865 | DOI
[2] A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, A. V. Yanilkin, “Theory and molecular dynamics modeling of spall fracture in liquids”, Physical Review B., 82 (2010), 174101 | DOI
[3] A. Kuksin, G. Norman, V. Stegailov, A. Yanilkin, P. Zhilyaev, “Dynamic fracture kinetics, influence of temperature and microstructure in the atomistic model of aluminum”, International Journal of Fracture, 162 (2010), 127–136 | DOI | Zbl
[4] V. V. Pogorelko, A. E. Mayer, “Influence of titanium and magnesium nanoinclusions on the strength of aluminum at high-rate tension: Molecular dynamics simulations”, Materials Science and Engineering: A., 662 (2016), 227–240 | DOI
[5] A. E. Mayer, A. A. Ebel, “Influence of free surface nanorelief on the rear spallation threshold: Molecular dynamics investigation”, Journal of Applied Physics, 120:16 (2016), 165903 | DOI
[6] E. N. Hahn, T. C. Germann, R. Ravelo, J. E. Hammerberg, M. A. Meyers, “On the ultimate tensile strength of tantalum”, Acta Materialia, 126 (2017), 313–328 | DOI
[7] Y. Cai, H. A. Wu, S. N. Luo, “Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids”, The Journal of Chemical Physics, 140 (2014), 214317 | DOI
[8] A. E. Mayer, P. N. Mayer, “Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals”, Journal of Applied Physics, 118:3 (2015), 035903 | DOI
[9] P. N. Mayer, A. E. Mayer, “Late stages of high rate tension of aluminum melt: Molecular dynamic simulation”, Journal of Applied Physics, 120:7 (2016), 075901 | DOI
[10] A. Stukowski, “Computational analysis methods in atomistic modeling of crystals”, JOM, 66:3 (2014), 399–407 | DOI | MR
[11] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18 (2010), 015012 | DOI
[12] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | MR | Zbl
[13] R. R. Zope, Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti-Al system”, Physical Review B., 68 (2003), 024102 | DOI | MR
[14] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B., 29 (1984), 6443 | DOI