Optimal control problems for a class of degenerate evolution equations with delay
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 319-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a solution to an optimal control problem for a wide class of equations with delay not solvable with respect to the time derivative is investigated. The set of admissible controls is assumed to be convex and closed in the space of control functions, the minimized functional is quadratic. Under the condition of strong relative $p$-radiality of the pair of operators in the equation, the theorems on the unique solvability of the optimal control problem for the case of an abstract delay operator and for the case when this operator has an integral form are proved. The obtained general results are used in the study of the optimal control problem for the system of gravitational-gyroscopic waves perturbed by an integral delay operator.
Keywords: optimal control, system with distributed parameters, degenerate evolution equation, equation with delay, existence and uniqueness of a solution.
@article{CHFMJ_2018_3_3_a4,
     author = {M. V. Plekhanova and G. D. Baybulatova},
     title = {Optimal control problems for a class of degenerate evolution equations with delay},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {319--331},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/}
}
TY  - JOUR
AU  - M. V. Plekhanova
AU  - G. D. Baybulatova
TI  - Optimal control problems for a class of degenerate evolution equations with delay
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 319
EP  - 331
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/
LA  - ru
ID  - CHFMJ_2018_3_3_a4
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%A G. D. Baybulatova
%T Optimal control problems for a class of degenerate evolution equations with delay
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 319-331
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/
%G ru
%F CHFMJ_2018_3_3_a4
M. V. Plekhanova; G. D. Baybulatova. Optimal control problems for a class of degenerate evolution equations with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 319-331. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/

[1] Krasovskii N.N., “On approximation of an optimal control problem to a system with aftereffect”, Reports of the USSR Academy of Sciences, 167:3 (1966), 540–542 (In Russ.)

[2] Krasovskii N.N., Theory of moving control, Nauka Publ., Moscow, 1968, 476 pp. (In Russ.)

[3] Gabasov R., Kirillova F.M., Quality theory of optimal processes, Nauka Publ., Moscow, 1971, 508 pp. (In Russ.) | MR

[4] Kolmanovskii V.B., Nosov V.R., Stability and periodical regimes of controlled systems with aftereffect, Nauka Publ., Moscow, 1981, 448 pp. (In Russ.)

[5] Lions J.-L., Control of Distributed Singular Systems, Gauthier-Villars, 1985, 552 pp. | MR

[6] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications, AMS, Providence, Rhode Island, 1999, 305 pp. | MR

[7] Fedorov V.E., Plekhanova M.V., “The problem of start control for a class of semilinear distributed systems of Sobolev type”, Proceedings of the Steklov Institute of Mathematics, 275, no. 1, 2011, S40–S48 | DOI | MR | Zbl

[8] Plekhanova M.V., Islamova A.F., “Problems with a robust mixed control for the linearized Boussinesq equation”, Differential Equations, 48:4 (2012), 574–585 | DOI | MR | Zbl

[9] Plekhanova M.V., Fedorov V.E., Optimal control of degenerate distributed systems, Publishing Center of South Ural State University, Chelyabinsk, 2013, 172 pp. (In Russ.)

[10] Plekhanova M.V., “Quasilinear equations that are not solved for the higher-order time derivative”, Siberian Mathematical Journal, 56:4 (2015), 725–735 | DOI | MR | Zbl

[11] M. V. Plekhanova, “Optimal control for quasilinear degenerate systems of higher order”, Journal of Mathematical Sciences, 219:2 (2016), 236–244 | DOI | MR | Zbl

[12] Plekhanova M.V., Baybulatova G.D., “Numerical study of a robast control problem for the linearized quasistationary system of the phase field equations”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 44–58 (In Russ.) | MR

[13] M. V. Plekhanova, “Distributed control problems for a class of degenerate semilinear evolution equations”, Journal of Computational and Applied Mathematics, 312 (2017), 39–46 | DOI | MR | Zbl

[14] Fedorov V.E., “Linear Sobolev type equations with relatively $p$-radial operators”, Doklady Mathematics, 54:3 (1996), 883–885 | MR | Zbl

[15] Fedorov V.E., “Degenerate strongly continuous semigroups of operators”, St. Petersburg Mathematical Journal, 12:3 (2001), 471–489 | MR | Zbl

[16] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht; Boston, 2003, 216 pp. | MR | Zbl

[17] V. E. Fedorov, E. A. Omelchenko, “On solvability of some classes of Sobolev type equations with delay”, Functional Differential Equations, 18:3–4 (2011), 187–199 | MR | Zbl

[18] Fedorov V.E., Omelchenko E.A., “On solvability of some classes of Sobolev type equations with delay.”, Functional Differential Equations, 18:3–4 (2011), 187–199 | MR | MR | Zbl | Zbl

[19] Fedorov V.E., Omelchenko E.A., “Inhomogeneous degenerate Sobolev type equations with delay”, Siberian Mathematical Journal, 53:2 (2012), 335–344 | DOI | MR | Zbl | Zbl

[20] Fedorov V.E., Omelchenko E.A., “Linear equations of the Sobolev type with integral delay operator”, Russian Mathematics, 58:1 (2014), 60–69 | DOI | MR | Zbl | Zbl

[21] Demidenko G.V., Uspenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker Inc., New York, Basel, Hong Kong, 2003, 632 pp. | MR | Zbl

[22] Sobolev S.L., “On a new problem of mathematical physics”, News of Academy of Sciences of USSR. Series: Mathematical, 18:1 (1954), 3–50 (In Russ.) | MR | Zbl