Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_3_a4, author = {M. V. Plekhanova and G. D. Baybulatova}, title = {Optimal control problems for a class of degenerate evolution equations with delay}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {319--331}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/} }
TY - JOUR AU - M. V. Plekhanova AU - G. D. Baybulatova TI - Optimal control problems for a class of degenerate evolution equations with delay JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 319 EP - 331 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/ LA - ru ID - CHFMJ_2018_3_3_a4 ER -
%0 Journal Article %A M. V. Plekhanova %A G. D. Baybulatova %T Optimal control problems for a class of degenerate evolution equations with delay %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 319-331 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/ %G ru %F CHFMJ_2018_3_3_a4
M. V. Plekhanova; G. D. Baybulatova. Optimal control problems for a class of degenerate evolution equations with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 319-331. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a4/
[1] Krasovskii N.N., “On approximation of an optimal control problem to a system with aftereffect”, Reports of the USSR Academy of Sciences, 167:3 (1966), 540–542 (In Russ.)
[2] Krasovskii N.N., Theory of moving control, Nauka Publ., Moscow, 1968, 476 pp. (In Russ.)
[3] Gabasov R., Kirillova F.M., Quality theory of optimal processes, Nauka Publ., Moscow, 1971, 508 pp. (In Russ.) | MR
[4] Kolmanovskii V.B., Nosov V.R., Stability and periodical regimes of controlled systems with aftereffect, Nauka Publ., Moscow, 1981, 448 pp. (In Russ.)
[5] Lions J.-L., Control of Distributed Singular Systems, Gauthier-Villars, 1985, 552 pp. | MR
[6] Fursikov A.V., Optimal Control of Distributed Systems. Theory and Applications, AMS, Providence, Rhode Island, 1999, 305 pp. | MR
[7] Fedorov V.E., Plekhanova M.V., “The problem of start control for a class of semilinear distributed systems of Sobolev type”, Proceedings of the Steklov Institute of Mathematics, 275, no. 1, 2011, S40–S48 | DOI | MR | Zbl
[8] Plekhanova M.V., Islamova A.F., “Problems with a robust mixed control for the linearized Boussinesq equation”, Differential Equations, 48:4 (2012), 574–585 | DOI | MR | Zbl
[9] Plekhanova M.V., Fedorov V.E., Optimal control of degenerate distributed systems, Publishing Center of South Ural State University, Chelyabinsk, 2013, 172 pp. (In Russ.)
[10] Plekhanova M.V., “Quasilinear equations that are not solved for the higher-order time derivative”, Siberian Mathematical Journal, 56:4 (2015), 725–735 | DOI | MR | Zbl
[11] M. V. Plekhanova, “Optimal control for quasilinear degenerate systems of higher order”, Journal of Mathematical Sciences, 219:2 (2016), 236–244 | DOI | MR | Zbl
[12] Plekhanova M.V., Baybulatova G.D., “Numerical study of a robast control problem for the linearized quasistationary system of the phase field equations”, Chelyabinsk Physical and Mathematical Journal, 1:2 (2016), 44–58 (In Russ.) | MR
[13] M. V. Plekhanova, “Distributed control problems for a class of degenerate semilinear evolution equations”, Journal of Computational and Applied Mathematics, 312 (2017), 39–46 | DOI | MR | Zbl
[14] Fedorov V.E., “Linear Sobolev type equations with relatively $p$-radial operators”, Doklady Mathematics, 54:3 (1996), 883–885 | MR | Zbl
[15] Fedorov V.E., “Degenerate strongly continuous semigroups of operators”, St. Petersburg Mathematical Journal, 12:3 (2001), 471–489 | MR | Zbl
[16] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht; Boston, 2003, 216 pp. | MR | Zbl
[17] V. E. Fedorov, E. A. Omelchenko, “On solvability of some classes of Sobolev type equations with delay”, Functional Differential Equations, 18:3–4 (2011), 187–199 | MR | Zbl
[18] Fedorov V.E., Omelchenko E.A., “On solvability of some classes of Sobolev type equations with delay.”, Functional Differential Equations, 18:3–4 (2011), 187–199 | MR | MR | Zbl | Zbl
[19] Fedorov V.E., Omelchenko E.A., “Inhomogeneous degenerate Sobolev type equations with delay”, Siberian Mathematical Journal, 53:2 (2012), 335–344 | DOI | MR | Zbl | Zbl
[20] Fedorov V.E., Omelchenko E.A., “Linear equations of the Sobolev type with integral delay operator”, Russian Mathematics, 58:1 (2014), 60–69 | DOI | MR | Zbl | Zbl
[21] Demidenko G.V., Uspenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker Inc., New York, Basel, Hong Kong, 2003, 632 pp. | MR | Zbl
[22] Sobolev S.L., “On a new problem of mathematical physics”, News of Academy of Sciences of USSR. Series: Mathematical, 18:1 (1954), 3–50 (In Russ.) | MR | Zbl