Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_3_a1, author = {A. I. Grigorieva}, title = {The conjugation problems for some analogues of the equation of longitudinal waves with a discontinuous coefficient}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {276--294}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a1/} }
TY - JOUR AU - A. I. Grigorieva TI - The conjugation problems for some analogues of the equation of longitudinal waves with a discontinuous coefficient JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 276 EP - 294 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a1/ LA - ru ID - CHFMJ_2018_3_3_a1 ER -
%0 Journal Article %A A. I. Grigorieva %T The conjugation problems for some analogues of the equation of longitudinal waves with a discontinuous coefficient %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 276-294 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a1/ %G ru %F CHFMJ_2018_3_3_a1
A. I. Grigorieva. The conjugation problems for some analogues of the equation of longitudinal waves with a discontinuous coefficient. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 3, pp. 276-294. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_3_a1/
[1] Demidenko G.V., Uspenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Marcel Dekker Inc., New York, Basel, Hong Kong, 2003, 632 pp. | MR | Zbl
[2] A. I. Kozhanov, Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999, 171 pp. | MR | Zbl
[3] Sveshnikov A.G., Al'shin A.B., Korpusov M.O., Pletner Yu.D., Linear and nonlinear Sobolev type equations, Fizmatlit Publ., Moscow, 2007, 736 pp. (In Russ.)
[4] Korpusov M.O., Blow-up in nonclassical nonlocal equations, Librokom Publ., Moscow, 2011 (In Russ.)
[5] Witham G.B., Linear and Nonlinear Waves, Whiley Sons, New York, London, Sidney, Toronto, 1974, 638 pp. | MR | MR
[6] Ikezi H., “Experimental study of solitons in plasma”, Solitons in action, 1981, 163–184, Mir Publ., Moscow \ (In Russ.)
[7] Doll R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and Nonlinear Wave Equations, Academic Press, London et al., 1982, 630 pp. | MR | MR
[8] Ladyzhenskaja O.A., “On solution of general difraction problem”, Reports of USSR Academy of Sciences, 96:3 (1954), 433–436 (In Russ.) | Zbl
[9] Longren K., “Experimental studies of solitons in nonlinear transmisson lines with dispersion”, Solitons in action, 1981, 138–162, Mir Publ., Moscow (In Russ.)
[10] G. Chen, S. Wang, “Existence and nonexistence of global solutions for the generalized IMBq equation”, Nonlinear Analysis. Theory, Methods and Applications, 36:8 (1999), 961–980 | DOI | MR | Zbl
[11] S. Wang, G. Chen, “Small amplutude solutions of the generalized IMBq equation”, Journal of Mathematical Analysis and Applications, 274:2 (2002), 846–-866 | DOI | MR | Zbl
[12] Zamyshlyaeva A.A., Yuzeeva A.V., “Initial-final value problem for Boussinesq — Love equation”, Bulletin of South Ural State University. Series: Mathematical modelling and programming, 2010, no. 5, 23–31 (In Russ.) | Zbl
[13] R. Xu, Y. Liu, “Global existence and blow-up of solutions for generalized Pochhammer — Chree equations”, Acta Mathematica Scientia. Ser. B, 30:5 (2010), 1793–1807 | DOI | MR | Zbl
[14] Zamyshljaeva A.A., “Initial-final problem for inhomogeneous Boussinesq — Love equation”, Bulletin of South Ural State University. Series: Mathematical modelling and programming, 2011, no. 10, 22–29 (In Russ.)
[15] Utkina E.A., “Dirichlet problem for a forth-order equation”, Differential Equations, 47:4 (2011), 599–603 | DOI | MR | Zbl
[16] Utkina E.A., “A uniqueness theorem for solution of one Dirichlet problem”, Russian Mathematics, 55:5 (2011), 51–55 | DOI | MR | Zbl
[17] Zamyshlyaeva A.A., Tsyplenkova O.N., “Optimal control of solutions to initial-final value problem for Boussinesq — Love equation”, Bulletin of South Ural State University. Series: Mathematical modelling and programming, 2012, no. 11, 13–24 (In Russ.) | MR | Zbl
[18] Plekhanova M.V., Islamova A.F., “Problems with a robust mixed control for the linearized Boussinesq equation”, Differential Equations, 48:4 (2012), 574–585 | DOI | MR | Zbl
[19] Pul'kina L.S., Problems with nonclassical conditions for hyperbolic equations, Samara University Publ., Samara, 2012 (In Russ.)
[20] Amirov Sh., Kozhanov A.I., “Global solvability of initial boundary-value problems for nonlinear analogs of the Boussinesq equation”, Mathematical Notes, 99:1–2 (2016), 183–190 | DOI | DOI | MR | Zbl
[21] Namsaraeva G.V., “Inverse problems of recovering external sources in the equation of longitudinal wave propagation”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 386–396 | DOI | MR | Zbl
[22] Il'in V.A., “On solvability of Dirichlet and Neumann problems for linear elliptic operator with discontinuous coefficients”, Doklady AN SSSR, 137:1 (1961), 28–30 (In Russ.) | Zbl
[23] Oleynik O.A., “Boundary value problems for linear equations of elliptic and parabolic types with discontinuous coefficients”, News of USSR Academy of Sciences. Ser. Mathematical, 25:1 (1961), 3–20 (In Russ.) | Zbl
[24] Kuleshov A.A., “Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities”, Doklady Mathematics, 85:1 (2012), 80–82 | DOI | MR | Zbl
[25] Rogozhnikov A.M., “Studying of a mixed problem describing the oscillations of a rod consisting of several segments with arbitrary lenghts”, Doklady Mathematics, 85:3 (2012), 399–402 | DOI | MR | Zbl
[26] Smirnov I.N., “On the vibrations described by the telegraph equation in the case of a system consisting of several parts of different densities and elasticities”, Differential Equations, 49:5 (2013), 617–622 | Zbl
[27] Shubin V.V., “Boundary value problems for third order equations with discontinuous coefficient”, Journal of Mathematical Sciences, 198:5 (2014), 637–647 | DOI | MR | Zbl
[28] S. V. Potapova, “Boundary value problems for pseudoparabolic equations with a variable time direction”, Journal of Inequalities in Pure and Applied Mathematics, 3:1 (2012), 73 | MR
[29] Kozhanov A.I., Potapova S.V., “Dirichlet problem for a class of composite type equations with discontinuous coefficient at the highest order derivative”, Far East mathematical journal, 14:1 (2014), 48–65 (In Russ.) | MR | Zbl
[30] Kozhanov A.I., Sharin E.F., “Zadacha sopryazheniya dlya nekotorykh neklassicheskikh differentsial'nykh uravneniy vysokogo poryadka. II.”, Mathematical notes of North-Eastern Federal University, 21:1 (2014), 18–28 (In Russ.) | Zbl
[31] Kozhanov A.I., Potapova S.V., “Conjugate problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, Journal of Mathematical Sciences, 215:4 (2016), 510–516 | DOI | MR | Zbl
[32] Kozhanov A.I., Potapova S.V., “Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution”, Doklady Mathematics, 95:3 (2017), 267–269 | DOI | DOI | MR | Zbl
[33] Trenogin V.A., Functional analysis, Fizmatlit Publ., Moscow, 2007, 488 pp. (In Russ.)