Structure and electronic properties of polymorphic types of fluorographene
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 202-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

The density functional theory in the gradient approximation has been used to calculate the structure and the electronic properties of five major polymorphic types of fluorographene in which the carbon atoms are in the equivalent structural states. The crystal lattice of a layer of the first structural type refers to the hexagonal system, its unit cell contains two fluorine atoms and two carbon atoms. The remaining structural forms of fluorographene have the crystal lattices corresponding to the orthorhombic syngony, their unit cells contain 8 or 16 atoms. The layer density of the fluorographene polymorph varies from 1.557 to 1.821 mg/m${}^2$, which is approximately twice the density of the graphene layers 0.74 mg/m${}^2$. As a result of calculations of the band structure and the density of electronic states, it was established that the width of the band gaps at the Fermi level for the structural types of fluorographene varies from 3.04 eV to 4.19 eV. The sublimation energy of the fluorographene polymorph types in the range from 14.08 to 14.32 eV/CF. This indicates the possibility of the stable existence of the fluorographene basic structural varieties under standard conditions.
Keywords: graphene, fluorographene, polymorphism, band structure, density of electronic states, ab initio calculations.
@article{CHFMJ_2018_3_2_a5,
     author = {M. E. Belenkov and V. M. Chernov and E. A. Belenkov},
     title = {Structure and electronic properties of polymorphic types of fluorographene},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {202--211},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a5/}
}
TY  - JOUR
AU  - M. E. Belenkov
AU  - V. M. Chernov
AU  - E. A. Belenkov
TI  - Structure and electronic properties of polymorphic types of fluorographene
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 202
EP  - 211
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a5/
LA  - ru
ID  - CHFMJ_2018_3_2_a5
ER  - 
%0 Journal Article
%A M. E. Belenkov
%A V. M. Chernov
%A E. A. Belenkov
%T Structure and electronic properties of polymorphic types of fluorographene
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 202-211
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a5/
%G ru
%F CHFMJ_2018_3_2_a5
M. E. Belenkov; V. M. Chernov; E. A. Belenkov. Structure and electronic properties of polymorphic types of fluorographene. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 202-211. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a5/

[1] J. T. Robinson, J. S. Burgess, C. E. Junkermeier [et al.], “Properties of fluorinated graphene films”, Nano Letters, 10:8 (2010), 3001–3005 | DOI

[2] R. R. Nair, W. Ren, R. Jalil [et al.], “Fluorographene: a two-dimensional counterpart of teflon”, Small, 6:24 (2010), 2877–2884 | DOI

[3] R. Zboril, F. Karlicky, A. B. Bourlinos [et al.], “Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to grapheme”, Small, 6:24 (2010), 2885–2891 | DOI

[4] K. S. Novoselov, A. K. Geim, S. V. Morozov [et al.], “Electric field effect in atomically thin carbon films”, Science, 306 (2004), 666–669 | DOI

[5] Novoselov K.S., “Graphene: materials of Flatland”, Successes of physical sciences, 181:12 (2011), 1299–1311 (In Russ.) | DOI

[6] Belenkov E.A., Kochengin A.E., “Structure and electronic properties of crystals consisting of graphene layers L${}_6$, L${}_{4{\rm-}8}$, L${}_{3{\rm-}12}$ and L${}_{4{\rm-}6{\rm-}12}$”, Physics of the Solid State, 57:10 (2015), 2126–2133 | DOI

[7] D. C. Elias, R. R. Nair, T. M. Mohiuddin [et al.], “Control of graphene's properties by reversible hydrogenation: evidence for graphane”, Science, 323 (2009), 610–613 | DOI

[8] D. Chen, H. Feng, J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications”, Chemical Reviews, 112:11 (2012), 6027–6053 | DOI

[9] B. Li, L. Zhou, D. Wu [et al.], “Photochemical chlorination of graphene”, ACS Nano, 5:7 (2011), 5957–5961 | DOI

[10] Openov L.A., Podlivaev A.I., “Thermal desorption of hydrogen from graphane”, Technical Physics Letters, 36:1 (2010), 31–33 | DOI

[11] Sorokin P.B., Chernozatonskii L.A., “Graphene-based semiconductor nanostructures”, Physics-Uspekhi, 56:2 (2013), 105–122 | DOI | DOI

[12] Belenkova T.E., Chernov V.M., Belenkov E.A., “Structural variations of graphane”, Radioelectronics. Nanosystems. Information technologies, 8:1 (2016), 49–54 (In Russ.)

[13] T. E. Belenkova, V. A. Greshnyakov, V. M. Chernov, E. A. Belenkov, “Structure of graphane polymorphs”, Journal of Physics: Conference Series, 917 (2017), 032015 | DOI

[14] J. O. Sofo, A. S. Chaudhari, G. D. Barber, “Graphane: A two-dimensional hydrocarbon”, Physical Review B., 75 (2007), 153401 | DOI

[15] X. D. Wen, L. Hand, V. Labet [et al.], “Graphane sheets and crystals under pressure”, Proceedings of the national Academy of Sciences., 108:17 (2011), 6833–6837 | DOI

[16] W. A. Koch, M. C. Holthausen, Chemist’s guide to density functional theory, 2nd, Wiley-VCH, Weinheim, 2001, 293 pp.

[17] J. P. Perdew, J. A. Chevary, S. H. Vosko [et al.], “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Physical Review B., 46 (1992), 6671–6687 | DOI

[18] P. Giannozzi, S. Baroni, N. Bonini [et al.], “Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials”, Journal of Physics: Condensed Matter, 21:39 (2009), 395502 | DOI