Molecular-dynamic study of the size effect in the compacting of monodisperse aluminum nanopowder
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 193-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of molecular dynamics simulation, the influence of the dimensions of aluminum particles in the range of 6–24 nm on the dynamics of nanopowder compacting under deformation of the system with constant rate of 1/ns. It is shown that an increase in nanoparticle sizes from 6 to 12 nm leads to a drop in the yield strength of the nanopowder from 0.4 to 0.3 GPa, and a further increase in the size of the nanoparticles does not affect the yield strength. The density of the system at zero pressure, determined by the adhesion forces, decreases with increasing nanoparticle sizes from 6 to 12 nm, and then does not change. When the nanopowder is compressed, the main increase in density occurs with a pressure increase of up to 1–2 GPa, and complete collapse of the voids takes place as the pressure increases to 5.5 GPa. Increasing the size of nanoparticles leads to a slowing down of the compaction process.
Keywords: nanopowder, compacting, size effect, molecular dynamics simulation.
@article{CHFMJ_2018_3_2_a4,
     author = {A. E. Mayer and M. Kh. A. Al-Sandoqachi},
     title = {Molecular-dynamic study of the size effect in the compacting of monodisperse aluminum nanopowder},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a4/}
}
TY  - JOUR
AU  - A. E. Mayer
AU  - M. Kh. A. Al-Sandoqachi
TI  - Molecular-dynamic study of the size effect in the compacting of monodisperse aluminum nanopowder
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 193
EP  - 201
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a4/
LA  - ru
ID  - CHFMJ_2018_3_2_a4
ER  - 
%0 Journal Article
%A A. E. Mayer
%A M. Kh. A. Al-Sandoqachi
%T Molecular-dynamic study of the size effect in the compacting of monodisperse aluminum nanopowder
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 193-201
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a4/
%G ru
%F CHFMJ_2018_3_2_a4
A. E. Mayer; M. Kh. A. Al-Sandoqachi. Molecular-dynamic study of the size effect in the compacting of monodisperse aluminum nanopowder. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 2, pp. 193-201. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_2_a4/

[1] W. H. Gourdin, “Dynamic consolidation of metal powders”, Progress in Materials Science, 30:1 (1986), 39–80 | DOI

[2] M. A. Meyers, D. J. Benson, E. A. Olevsky, “Shock consolidation: microstructurally-based analysis and computational modeling”, Acta Materialia, 47:7 (1999), 2089–2108 | DOI

[3] A. A. Bokov, G. Sh. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilina, A. A. Nozdrin, S. N. Paranin, E. A. Olevskii, “Uniaxial compaction of nanopowders on a magnetic pulse press”, Technical Physics, 58:10 (2013), 1459–1468 | DOI

[4] S. P. Kiselev, “Compaction of copper nanopowder”, Journal of Applied Mechanics and Technical Physics, 48:3 (2007), 412–419 | DOI | Zbl

[5] S. P. Kiselev, “Compaction of a mixture of copper and molybdenum nanopowders modeled by the molecular dynamics method”, Journal of Applied Mechanics and Technical Physics, 49:5 (2007), 712–722 | DOI

[6] L. Huang, W. Z. Han, Q. An, W. A. Goddard III, S. N. Luo, “Shock-induced consolidation and spallation of Cu nanopowders”, Journal of Applied Physics, 111:1 (2012), 013508 | DOI

[7] A. E. Mayer, A. A. Ebel, “Shock-induced compaction of nanoparticle layers into nanostructured coating”, Journal of Applied Physics, 122:16 (2017), 165901 | DOI

[8] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl

[9] F. Apostol, Y. Mishin, “Interatomic potential for the Al-Cu system”, Physical Review B., 83 (2011), 054116 | DOI

[10] M. S. Daw, M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals”, Physical Review B., 29 (1984), 6443 | DOI

[11] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO — the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18 (2010), 015012 | DOI