Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminium mixture under the oblique
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 111-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study with methods of mathematical and numerical modeling the process of heterogeneous detonation in channel under the oblique in stoichiometric mixture of aluminum and oxygen was investigated. Wave patterns in different detonation regimes of propagation (subcritical, critical and supercritical) were analyzed. Impact of bidisprese fraction on amplitude characteristics of transverse waves was investigated.
Keywords: heterogeneous detonation, aluminum particles, channel with inclination, mathematical model.
@article{CHFMJ_2018_3_1_a5,
     author = {S. A. Lavruk},
     title = {Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminium mixture under the oblique},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {111--123},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a5/}
}
TY  - JOUR
AU  - S. A. Lavruk
TI  - Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminium mixture under the oblique
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 111
EP  - 123
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a5/
LA  - ru
ID  - CHFMJ_2018_3_1_a5
ER  - 
%0 Journal Article
%A S. A. Lavruk
%T Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminium mixture under the oblique
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 111-123
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a5/
%G ru
%F CHFMJ_2018_3_1_a5
S. A. Lavruk. Modeling of heterogeneous detonation propagation in monodisperse and bidisperse aluminium mixture under the oblique. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 111-123. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a5/

[1] V. E. Fedorov, T. A. Khmel, Y. V. Kratova, “Shock and detonation wave diffraction at a sudden expansion in gas–particle mixtures”, Shock Waves, 18 (2008), 280–290

[2] “Diffraction of wave processes of gas suspensions”, Bulletin Of South Ural State University. Series: Mathematical Modeling and Programming, 6:1 (2013), 85–97 (In Russ.)

[3] Kratova Y.V., Fedorov A.V., Khmel T.A., “Diffraction of a plane detonation wave on a back-facing step in a gas suspension”, Combustion, Explosion and Shock Waves, 45:5 (2009), 591–602 | DOI

[4] V. E. Fedorov, T. A. Khmel, Y. V. Kratova, “Cellular detonation diffraction in gas–particle mixtures”, Shock Waves, 20:6 (2010), 509–519 | DOI

[5] Zel'dovich Ya.B., Kogarko S.M., Simonov N.N., “An experimental investigation of spherical detonation of gases”, Soviet Physics. Technical Physics, 1 (1956), 1689–1713

[6] Kratova Y.V., Fedorov A.V., Khmel T.A., “Specific features of cellular detonation in polydisperse suspensions of aluminum particles in a gas”, Combustion, Explosion and Shock Waves, 47:5 (2011), 572–580 | DOI

[7] Fedorov A.V., Khmel T.A., “Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles”, Combustion, Explosion and Shock Waves, 44:3 (2008), 343–353 | DOI

[8] Thomas G.O., Williams R.L., “Detonation interaction with wedges and bends”, Shock Waves, 11 (2002), 481–492 | DOI

[9] G. O. Thomas, R. L. Williams, “Detonation interaction with wedges and bends”, Shock Waves, 11 (2002), 481–492 | DOI

[10] C. Conrad, S. R. Saretto, S.-Y. Lee, R. J. Santoro, “Overdriven detonation wave transition in a gradual area expansion for multicycle PDE application”, Pulse and Continuous Detonation Propulsion, eds. G. Roy, S. Frolov, Torus Press, M., 2006, 273–286

[11] Q. Qing, C. K. Boo, D. Hua-Shu, M. T. Her, “The evolution of a detonation wave in a variable cross-sectional chamber”, Shock Waves, 18 (2008), 213–233 | DOI

[12] B. Khasainov, H. N. Presles, D. Desbordes, P. Demontis, P. Vidal, “Detonation diffraction from circular tubes to cones”, Shock Waves, 14 (2005), 187–192 | DOI

[13] W. A. Strauss, “Investigation of the detonation of aluminum powder-oxygen mixtures”, AIAA Journal, 6:9 (1968), 1753–1756 | DOI

[14] Fedorov A.V., “Structure of the heterogeneous detonation of aluminum particles dispersed in oxygen”, Combustion, Explosion and Shock Waves, 28:3 (1992), 277–286 | DOI

[15] V. Tanguay, S. Goroshin, A. J. Higgins, F. Zhang, “Aluminum particle. Combustion in high-speed detonation products”, Combustion Science and Technology, 181:4 (2009), 670–693 | DOI

[16] Sandaram D., Yang B., Zarko V.E., “Combustion of nano aluminum particles (Review)”, Combustion, Explosion and Shock Waves, 51:2 (2015), 173–196 | DOI

[17] A. V. Fedorov, T. A. Khmel, “Detonation structures in gas suspensions of submicron and nano aluminum particles”, Nonequilibrium Processes in Physics and Chemistry, v. II, eds. A. M. Starik, S. M. Frolov, Torus-press, M., 2016, 341–351

[18] Fedorov A.V., Khmel T.A., Lavruk S.A., “Exit of a heterogeneous detonation wave into a channel with linear expansion. I. Propagation regimes”, Combustion, Explosion and Shock Waves, 53:5 (2017), 585–595 | DOI | MR

[19] H. O. Barthel, “Predicted spacings in hydrogen–oxygen–argon detonations”, Physics of Fluids, 17:8 (1974), 1547–1553