Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_1_a2, author = {D. T. Siraeva and S. V. Khabirov}, title = {Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {38--57}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/} }
TY - JOUR AU - D. T. Siraeva AU - S. V. Khabirov TI - Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 38 EP - 57 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/ LA - ru ID - CHFMJ_2018_3_1_a2 ER -
%0 Journal Article %A D. T. Siraeva %A S. V. Khabirov %T Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 38-57 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/ %G ru %F CHFMJ_2018_3_1_a2
D. T. Siraeva; S. V. Khabirov. Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 38-57. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/
[1] L.V. Ovsyannikov, “The "podmodeli" program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR
[2] S.V. Khabirov, “Nonisomorphic Lie algebras admitted by gasdynamic models”, Ufa Mathematical Journal, 3:2 (2011), 85–55 | MR | MR
[3] S.V. Khabirov, “Optimal system for sum of two ideals admitted by hydrodynamic type equations”, Ufa Mathematical Journal, 6:2 (2014), 97–101 | DOI | MR
[4] D.T. Siraeva, “Optimal system of non-similar subalgebras of sum of two ideals”, Ufa Mathematical Journal, 6:1 (2014), 90–103 | DOI | MR
[5] S.V. Khabirov, Lectures. Analytical methods in gas dynamics, Gilem Publ., Ufa, 2003, 192 pp. (In Russ.)
[6] D.T. Siraeva, “The motion of the particles volume corresponding to invariant solution of rank 2 submodel of hydrodynamic type”, Proceedings of the Mavlyutov Institute of Mechanics of Ufa Scientific center of RAS, 11:2 (2016), 205–209 (In Russ.) | MR
[7] D.T. Siraeva, “Propagation of perturbations of a sound wave on an invariant solution of a hydrodynamic type model of rank 2”, Fundamental mathematics and its applications in the natural sciences. Mathematics. Physics.Chemistry, Proceedings of IX International School-Conference for students, graduate students and young scientists (Ufa, October 3–7, 2016), Bashkir State University, Ufa, 2016, 35–-42 (In Russ.)
[8] Yu.A. Chirkunov, S.V. Khabirov, Elements of differential equations symmetry analysis for continuum mechanics, Novosibirsk State Technical University, Novosibirsk, 2012, 659 pp. (In Russ.)
[9] G.A. Korn, T.M. Korn, Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, McGraw-Hill, Inc., New York, 1961, 943 pp. | MR | MR
[10] E. Kamke, Handbook of Ordinary Differential Equations, Nauka Publ., Moscow, 1976, 576 pp. (In Russ.) | MR