Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 38-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations of hydrodynamic type with the equation of state in the form of pressure, represented as a sum of density and entropy functions, are considered in the article. For the invariant submodel of a 2-dimensional subalgebra in the form of a linear combination of translations chosen from the previously constructed optimal system of non-similar subalgebras, we find the integrals of the system, determine the type of the system, reduce the system to the symmetric form and the characteristic form, find exact solutions, define equivalence transformations for the linearized system, the group classification problem is solved, an optimal system of non-similar subalgebras is constructed, and the application of integral transformations is shown.
Keywords: subalgebra, invariant submodel, exact solution, group classification, equivalence transformation.
@article{CHFMJ_2018_3_1_a2,
     author = {D. T. Siraeva and S. V. Khabirov},
     title = {Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {38--57},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/}
}
TY  - JOUR
AU  - D. T. Siraeva
AU  - S. V. Khabirov
TI  - Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 38
EP  - 57
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/
LA  - ru
ID  - CHFMJ_2018_3_1_a2
ER  - 
%0 Journal Article
%A D. T. Siraeva
%A S. V. Khabirov
%T Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 38-57
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/
%G ru
%F CHFMJ_2018_3_1_a2
D. T. Siraeva; S. V. Khabirov. Invariant submodel of rank 2 on subalgebra of translations linear combinations for a hydrodynamic type model. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 38-57. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a2/

[1] L.V. Ovsyannikov, “The "podmodeli" program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR

[2] S.V. Khabirov, “Nonisomorphic Lie algebras admitted by gasdynamic models”, Ufa Mathematical Journal, 3:2 (2011), 85–55 | MR | MR

[3] S.V. Khabirov, “Optimal system for sum of two ideals admitted by hydrodynamic type equations”, Ufa Mathematical Journal, 6:2 (2014), 97–101 | DOI | MR

[4] D.T. Siraeva, “Optimal system of non-similar subalgebras of sum of two ideals”, Ufa Mathematical Journal, 6:1 (2014), 90–103 | DOI | MR

[5] S.V. Khabirov, Lectures. Analytical methods in gas dynamics, Gilem Publ., Ufa, 2003, 192 pp. (In Russ.)

[6] D.T. Siraeva, “The motion of the particles volume corresponding to invariant solution of rank 2 submodel of hydrodynamic type”, Proceedings of the Mavlyutov Institute of Mechanics of Ufa Scientific center of RAS, 11:2 (2016), 205–209 (In Russ.) | MR

[7] D.T. Siraeva, “Propagation of perturbations of a sound wave on an invariant solution of a hydrodynamic type model of rank 2”, Fundamental mathematics and its applications in the natural sciences. Mathematics. Physics.Chemistry, Proceedings of IX International School-Conference for students, graduate students and young scientists (Ufa, October 3–7, 2016), Bashkir State University, Ufa, 2016, 35–-42 (In Russ.)

[8] Yu.A. Chirkunov, S.V. Khabirov, Elements of differential equations symmetry analysis for continuum mechanics, Novosibirsk State Technical University, Novosibirsk, 2012, 659 pp. (In Russ.)

[9] G.A. Korn, T.M. Korn, Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, McGraw-Hill, Inc., New York, 1961, 943 pp. | MR | MR

[10] E. Kamke, Handbook of Ordinary Differential Equations, Nauka Publ., Moscow, 1976, 576 pp. (In Russ.) | MR