Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_1_a1, author = {M. G. Mazhgikhova}, title = {Initial and boundary value problems for ordinary differential equation of fractional order with delay}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {27--37}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a1/} }
TY - JOUR AU - M. G. Mazhgikhova TI - Initial and boundary value problems for ordinary differential equation of fractional order with delay JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 27 EP - 37 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a1/ LA - ru ID - CHFMJ_2018_3_1_a1 ER -
%0 Journal Article %A M. G. Mazhgikhova %T Initial and boundary value problems for ordinary differential equation of fractional order with delay %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 27-37 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a1/ %G ru %F CHFMJ_2018_3_1_a1
M. G. Mazhgikhova. Initial and boundary value problems for ordinary differential equation of fractional order with delay. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 27-37. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a1/
[1] A.M. Nakhushev, Fractional calculus and its application, Fizmatlit Publ., Moscow, 2003, 272 pp. (In Russ.)
[2] J. H. Barrett, “Differential equation of non-integer order”, Canadian Journal of Mathemtics, 4 (1954), 529–541 | DOI
[3] M.M. Dzhrbashyan, A.B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, The News of the Academy of Science of the Armenian SSR, 3:1 (1968), 3–-29 (In Russ.)
[4] M.M. Dzhrbashyan, “Boundary problem for fractional differential operator of Sturm — Liuoville type”, The News of the Academy of Science of the Armenian SSR, 5:2 (1970), 71–96 (In Russ.)
[5] A.M. Nakhushev, “Sturm — Liouville problem for an ordinary second order differential equation with fractional derivatives in the low member”, Reports of the USSR Academy of Sciences, 234:2 (1977), 308–311 (In Russ.)
[6] A.V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–-582 | DOI | DOI
[7] S.B. Norkin, “On the solutions of a linear homogeneous second order differential equation with delay”, Progress of Mathematical Sciences, 14:1 (1959), 199–206 (In Russ.)
[8] R. E. Bellman, K. L. Cooke, Differential-Difference Equations, Academic Press, N. Y.; London, 1963, 478 pp.
[9] L.E. Elsgolts, S.B. Norkin, Introduction to the theory of differential equations with deflecting argument, Nauka Publ., Moscow, 1971, 296 pp. (In Russ.)
[10] A.D. Myshkis, Linear differential equations with delay, Nauka Publ., Moscow, 1972, 352 pp. (In Russ.)
[11] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, N. Y.; Heidelberg; Berlin, 1977, 365 pp.
[12] M.G. Mazhgikhova, “Initial value problem for ordinary differential equation with Riemann — Liouville derivative with delay”, Scientific Notes of Oryol State University, 67:4 (2015), 46–47 (In Russ.)
[13] M.G. Mazhgikhova, “Dirichlet problem for ordinary differential equation of fractional order with delay”, Reports of Adyghe (Circassian) International Academy of Sciences, 17:2 (2015), 42–47 (In Russ.)
[14] M.G. Mazhgikhova, “Neumann problem for ordinary differential equation of fractional order with delay”, News of Kabardino-Balkarian scientific center of the Russian Academy of Sciences, 70:2 (2016), 15–20 (In Russ.)
[15] A.N. Zarubin, “An algorithm for solving an initial boundary value problem for a mixed-type equation with delayed argument”, Computational Mathematics and Mathematical Physics, 37:2 (1997), 180–183 | MR
[16] A.N. Zarubin, “Initial-boundary value problem for a mixed-type equation with nonsmooth degeneration line and with retarded argument in the derivative”, Differential Equations, 46:12 (2010), 1710–1721 | DOI | MR | MR
[17] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Mathematical Journal, 19 (1977), 7–15 | MR
[18] A. K. Shukla, J. C. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, Journal of Mathematical Analysis and Applications, 336 (2007), 797–811 | DOI | MR
[19] A.V. Pskhu, Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR
[20] M.M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain, Nauka Publ., Moscow, 1966, 672 pp. (In Russ.) | MR