Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 5-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Issues of $\varepsilon$-controllability is researched for linear weakly degenerate fractional order evolution control systems with distributed parameters. The case of 0-bounded pair of operators in the system is considered. Using the generalized Showalter — Sidorov conditions instead of the Cauchy conditions significantly simplified the technical part of the study. Criteria and convenient in applications sufficient conditions of the $\varepsilon$-controllability in time $T$ and of the $\varepsilon$-controllability in free time are derived for this type systems in the cases of infinite-dimensional and finite-dimensional input. It is shown that for the finite-dimensional $\varepsilon$-controllability of the system finite dimensionality of its degeneracy subspace is necesarry. The obtained results are illustrated by examples of control systems described by differential equations and systems of equations not solvable with respect to the time-fractional derivative.
Keywords: controllability, $\varepsilon$-controllability, degenerate evolution equation, Gerasimov — Caputo fractional derivative.
@article{CHFMJ_2018_3_1_a0,
     author = {D. M. Gordievskikh and V. E. Fedorov and M. M. Turov},
     title = {Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/}
}
TY  - JOUR
AU  - D. M. Gordievskikh
AU  - V. E. Fedorov
AU  - M. M. Turov
TI  - Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 5
EP  - 26
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/
LA  - ru
ID  - CHFMJ_2018_3_1_a0
ER  - 
%0 Journal Article
%A D. M. Gordievskikh
%A V. E. Fedorov
%A M. M. Turov
%T Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 5-26
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/
%G ru
%F CHFMJ_2018_3_1_a0
D. M. Gordievskikh; V. E. Fedorov; M. M. Turov. Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/

[1] R. E. Kalman, Y. C. Ho, K. S. Narendra, “Controllability of linear dynamical systems”, Contributions to Differential Equations, 1:2 (1963), 189–213 | MR

[2] H. O. Fattorini, “On complete controllability of linear systems”, Journal of Differential Equations, 3 (1967), 391–402 | DOI | MR

[3] N.N. Krasovskiy, Theory of movement control, Nauka Publ., Moscow, 1968, 359 pp. (In Russ.) | MR

[4] A.B. Kurzhanskiy, “Towards controllability in Banach spaces”, Differential equations, 6:9 (1969), 1715–1718 (In Russ.)

[5] R. Triggiani, “Controllability and observability in Banach space with bounded operators”, SIAM Journal on Control, 13:2 (1975), 462–491 | DOI | MR

[6] D. Salamon, “On controllability and observability of time delay systems”, IEEE Transactions on Automatic Control, AC-29:5 (1984), 432–439 | DOI | MR

[7] B. Shklyar, “Exact null controllability of abstract differential equations by finite-dimensional control and strongly minimal families of exponentials”, Differential Equations and Applications, 2:3 (2011), 171–188 | DOI | MR

[8] R. F. Curtain, “The Salamon — Weiss class of well-posed infinite dimensional linear systems: a survey”, IMA Journal of Mathemtical Control and Information, 14 (1997), 207–223 | DOI | MR

[9] F.A. Sholokhovich, “On controllability of linear dynamical systems”, News of Ural State University, 10:1 (1998), 103–126 (In Russ.) | MR

[10] J. Klamka, “Controllability of dynamical systems. A survey”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 61:2 (2013), 335–342 | MR

[11] A. Debbouche, D. Baleanu, “Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems”, Computers and Mathematics with Applications, 62 (2011), 1442–1450 | DOI | MR

[12] M. Bragdi, A. Debbouche, “Controllability of fractional nonlocal quasilinear evolution inclusions with resolvent families”, International Journal of Difference Equations, 8 (2013), 15–25 | MR

[13] D. N. Chalishajar, K. Malar, K. Karthikeyan, “Approximate controllability of abstract impulsive fractional neutral evolution equations with infinite delay in Bamach spaces”, Electronic Journal of Differential Equations, 2013, no. 275, 1–21 | MR

[14] V.V. Obukhovskiy, G.G. Petrosyan, “On controllability problem for a semilinear functional-differential inclusion of fractional order with infinite delay”, Bulletin of Voronezh State University. Series: Physics. Mathematics, 2014, no. 1, 106–126 (In Russ.)

[15] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elseiver, Amsterdam, 2016, 294 pp. | MR

[16] V.E. Fedorov, O.A. Ruzakova, “Controllability of linear Sobolev type equations with relatively $p$-radial operators”, Russian Mathematics, 46:7 (2002), 54–57 | MR

[17] V.E. Fedorov, O.A. Ruzakova, “One-dimensional controllability in Hilbert spaces of linear Sobolev type equations”, Differential Equations, 38:8 (2002), 1137–1139 | DOI | MR

[18] V.E. Fedorov, O.A. Ruzakova, “Controllability in dimensions of one and two of Sobolev-type equations in Banach spaces”, Mathematical Notes, 74:4 (2003), 583–592 | DOI | DOI | MR

[19] V.E. Fedorov, O.A. Ruzakova, “On $\varepsilon$-controllability of linear equations not solved with respect to the derivative in Banach spaces”, Computational Technologies, 10:5 (2005), 90–102 (In Russ.)

[20] V.E. Fedorov, B. Shklyar, “Exact null controllability of degenerate evolution equations with scalar control”, Sbornik: Mathematics, 203:12 (2012), 1817–1836 | DOI | DOI | MR

[21] M.V. Plekhanova, V.E. Fedorov, Optimal Control for Degenerate Distributed Systems, Publishing Center of South Ural State University, Chelyabinsk, 2013, 174 pp. (In Russ.)

[22] M.V. Plekhanova, V.E. Fedorov, “On control of degenerate distributed systems”, Ufa Mathematical Journal, 6:2 (2014), 77–96 | DOI | MR

[23] M. Fečkan, J. Wang, Y. Zhou, “Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators”, Journal of Optimization Theory and Applications, 156 (2014), 79–95 | MR

[24] J. Wang, M. Fečkan, Y. Zhou, “Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions”, Evolution Equations and Control Theory, 6:3 (2017), 471–486 | DOI | MR

[25] N. I. Mahmudov, “Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces”, Abstract and Applied Analysis, 2013, 502839 | MR

[26] A. Debbouche, J. J. Nieto, “Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls”, Applied Mathematics and Computation, 245 (2014), 74–85 | DOI | MR

[27] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003, 216 pp. | MR

[28] V. E. Fedorov, D. M. Gordievskikh, G. D. Baybulatova, “Controllability of a class of weakly degenerate fractional order evolution equations”, AIP Conference Proceedings, 1907 (2017), 020009 | DOI

[29] V. E. Fedorov, D. M. Gordievskikh, “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI | MR

[30] V. E. Fedorov, D. M. Gordievskikh, M.V. Plekhanova, “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR

[31] M. V. Plekhanova, “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Mathematical Methods in the Applied Sciences, 40:17 (2017), 6138–6146 | DOI | MR

[32] A.N. Gerasimov, “Generalization of linear laws of deformation and their applications to problems of internal friction”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.)

[33] M. Caputo, “Linear models of dissipation whose $Q$ is almost frequency independent — II”, Geophysical Journal of the Royal Astronomical Society, 13 (1967), 529–539 | DOI | MR

[34] G. M. Scott-Blair, Survey of General and Applied Rheology, Pitman, London, 1949, 196 pp.

[35] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, London, Paris, 1969, 198 pp. | MR | MR