Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2018_3_1_a0, author = {D. M. Gordievskikh and V. E. Fedorov and M. M. Turov}, title = {Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {5--26}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/} }
TY - JOUR AU - D. M. Gordievskikh AU - V. E. Fedorov AU - M. M. Turov TI - Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2018 SP - 5 EP - 26 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/ LA - ru ID - CHFMJ_2018_3_1_a0 ER -
%0 Journal Article %A D. M. Gordievskikh %A V. E. Fedorov %A M. M. Turov %T Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations %J Čelâbinskij fiziko-matematičeskij žurnal %D 2018 %P 5-26 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/ %G ru %F CHFMJ_2018_3_1_a0
D. M. Gordievskikh; V. E. Fedorov; M. M. Turov. Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/
[1] R. E. Kalman, Y. C. Ho, K. S. Narendra, “Controllability of linear dynamical systems”, Contributions to Differential Equations, 1:2 (1963), 189–213 | MR
[2] H. O. Fattorini, “On complete controllability of linear systems”, Journal of Differential Equations, 3 (1967), 391–402 | DOI | MR
[3] N.N. Krasovskiy, Theory of movement control, Nauka Publ., Moscow, 1968, 359 pp. (In Russ.) | MR
[4] A.B. Kurzhanskiy, “Towards controllability in Banach spaces”, Differential equations, 6:9 (1969), 1715–1718 (In Russ.)
[5] R. Triggiani, “Controllability and observability in Banach space with bounded operators”, SIAM Journal on Control, 13:2 (1975), 462–491 | DOI | MR
[6] D. Salamon, “On controllability and observability of time delay systems”, IEEE Transactions on Automatic Control, AC-29:5 (1984), 432–439 | DOI | MR
[7] B. Shklyar, “Exact null controllability of abstract differential equations by finite-dimensional control and strongly minimal families of exponentials”, Differential Equations and Applications, 2:3 (2011), 171–188 | DOI | MR
[8] R. F. Curtain, “The Salamon — Weiss class of well-posed infinite dimensional linear systems: a survey”, IMA Journal of Mathemtical Control and Information, 14 (1997), 207–223 | DOI | MR
[9] F.A. Sholokhovich, “On controllability of linear dynamical systems”, News of Ural State University, 10:1 (1998), 103–126 (In Russ.) | MR
[10] J. Klamka, “Controllability of dynamical systems. A survey”, Bulletin of the Polish Academy of Sciences. Technical Sciences, 61:2 (2013), 335–342 | MR
[11] A. Debbouche, D. Baleanu, “Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems”, Computers and Mathematics with Applications, 62 (2011), 1442–1450 | DOI | MR
[12] M. Bragdi, A. Debbouche, “Controllability of fractional nonlocal quasilinear evolution inclusions with resolvent families”, International Journal of Difference Equations, 8 (2013), 15–25 | MR
[13] D. N. Chalishajar, K. Malar, K. Karthikeyan, “Approximate controllability of abstract impulsive fractional neutral evolution equations with infinite delay in Bamach spaces”, Electronic Journal of Differential Equations, 2013, no. 275, 1–21 | MR
[14] V.V. Obukhovskiy, G.G. Petrosyan, “On controllability problem for a semilinear functional-differential inclusion of fractional order with infinite delay”, Bulletin of Voronezh State University. Series: Physics. Mathematics, 2014, no. 1, 106–126 (In Russ.)
[15] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elseiver, Amsterdam, 2016, 294 pp. | MR
[16] V.E. Fedorov, O.A. Ruzakova, “Controllability of linear Sobolev type equations with relatively $p$-radial operators”, Russian Mathematics, 46:7 (2002), 54–57 | MR
[17] V.E. Fedorov, O.A. Ruzakova, “One-dimensional controllability in Hilbert spaces of linear Sobolev type equations”, Differential Equations, 38:8 (2002), 1137–1139 | DOI | MR
[18] V.E. Fedorov, O.A. Ruzakova, “Controllability in dimensions of one and two of Sobolev-type equations in Banach spaces”, Mathematical Notes, 74:4 (2003), 583–592 | DOI | DOI | MR
[19] V.E. Fedorov, O.A. Ruzakova, “On $\varepsilon$-controllability of linear equations not solved with respect to the derivative in Banach spaces”, Computational Technologies, 10:5 (2005), 90–102 (In Russ.)
[20] V.E. Fedorov, B. Shklyar, “Exact null controllability of degenerate evolution equations with scalar control”, Sbornik: Mathematics, 203:12 (2012), 1817–1836 | DOI | DOI | MR
[21] M.V. Plekhanova, V.E. Fedorov, Optimal Control for Degenerate Distributed Systems, Publishing Center of South Ural State University, Chelyabinsk, 2013, 174 pp. (In Russ.)
[22] M.V. Plekhanova, V.E. Fedorov, “On control of degenerate distributed systems”, Ufa Mathematical Journal, 6:2 (2014), 77–96 | DOI | MR
[23] M. Fečkan, J. Wang, Y. Zhou, “Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators”, Journal of Optimization Theory and Applications, 156 (2014), 79–95 | MR
[24] J. Wang, M. Fečkan, Y. Zhou, “Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions”, Evolution Equations and Control Theory, 6:3 (2017), 471–486 | DOI | MR
[25] N. I. Mahmudov, “Approximate controllability of fractional Sobolev-type evolution equations in Banach spaces”, Abstract and Applied Analysis, 2013, 502839 | MR
[26] A. Debbouche, J. J. Nieto, “Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls”, Applied Mathematics and Computation, 245 (2014), 74–85 | DOI | MR
[27] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, Boston, 2003, 216 pp. | MR
[28] V. E. Fedorov, D. M. Gordievskikh, G. D. Baybulatova, “Controllability of a class of weakly degenerate fractional order evolution equations”, AIP Conference Proceedings, 1907 (2017), 020009 | DOI
[29] V. E. Fedorov, D. M. Gordievskikh, “Resolving operators of degenerate evolution equations with fractional derivative with respect to time”, Russian Mathematics, 59:1 (2015), 60–70 | DOI | MR
[30] V. E. Fedorov, D. M. Gordievskikh, M.V. Plekhanova, “Equations in Banach spaces with a degenerate operator under a fractional derivative”, Differential Equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR
[31] M. V. Plekhanova, “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Mathematical Methods in the Applied Sciences, 40:17 (2017), 6138–6146 | DOI | MR
[32] A.N. Gerasimov, “Generalization of linear laws of deformation and their applications to problems of internal friction”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.)
[33] M. Caputo, “Linear models of dissipation whose $Q$ is almost frequency independent — II”, Geophysical Journal of the Royal Astronomical Society, 13 (1967), 529–539 | DOI | MR
[34] G. M. Scott-Blair, Survey of General and Applied Rheology, Pitman, London, 1949, 196 pp.
[35] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, London, Paris, 1969, 198 pp. | MR | MR