Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 5-26

Voir la notice de l'article provenant de la source Math-Net.Ru

Issues of $\varepsilon$-controllability is researched for linear weakly degenerate fractional order evolution control systems with distributed parameters. The case of 0-bounded pair of operators in the system is considered. Using the generalized Showalter — Sidorov conditions instead of the Cauchy conditions significantly simplified the technical part of the study. Criteria and convenient in applications sufficient conditions of the $\varepsilon$-controllability in time $T$ and of the $\varepsilon$-controllability in free time are derived for this type systems in the cases of infinite-dimensional and finite-dimensional input. It is shown that for the finite-dimensional $\varepsilon$-controllability of the system finite dimensionality of its degeneracy subspace is necesarry. The obtained results are illustrated by examples of control systems described by differential equations and systems of equations not solvable with respect to the time-fractional derivative.
Keywords: controllability, $\varepsilon$-controllability, degenerate evolution equation, Gerasimov — Caputo fractional derivative.
@article{CHFMJ_2018_3_1_a0,
     author = {D. M. Gordievskikh and V. E. Fedorov and M. M. Turov},
     title = {Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/}
}
TY  - JOUR
AU  - D. M. Gordievskikh
AU  - V. E. Fedorov
AU  - M. M. Turov
TI  - Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2018
SP  - 5
EP  - 26
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/
LA  - ru
ID  - CHFMJ_2018_3_1_a0
ER  - 
%0 Journal Article
%A D. M. Gordievskikh
%A V. E. Fedorov
%A M. M. Turov
%T Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2018
%P 5-26
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/
%G ru
%F CHFMJ_2018_3_1_a0
D. M. Gordievskikh; V. E. Fedorov; M. M. Turov. Infinite-dimensional and finite-dimensional $\varepsilon$-controllability for a class of fractional order degenerate evolution equations. Čelâbinskij fiziko-matematičeskij žurnal, Tome 3 (2018) no. 1, pp. 5-26. http://geodesic.mathdoc.fr/item/CHFMJ_2018_3_1_a0/