Ab initio calculations of structures and properties of diamond-like phases, obtained from nanotubes and 3D-graphites
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 469-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical analysis of structures and calculations of properties of diamond-like phases obtained from carbon nanotubes and three-dimensional graphites are performed. As a result of the analysis, the possibility of the stable existence of thirteen phases in which all carbon atoms are in crystallographically equivalent positions was established. Using the density functional theory method in the local density approximation, for all phases geometrically optimized structures and structural characteristics, sublimation energy, bandgap and hardness are calculated. It was established that the properties of these phases can vary over a wide range.
Keywords: diamond crystal, diamond-like carbon, carbon nanotubes, graphite, mechanical properties, ab initio calculations.
@article{CHFMJ_2017_2_4_a8,
     author = {E. A. Belenkov and V. M. Berezin and V. A. Greshnyakov},
     title = {Ab initio calculations of structures and properties of diamond-like phases, obtained from nanotubes and {3D-graphites}},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {469--482},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a8/}
}
TY  - JOUR
AU  - E. A. Belenkov
AU  - V. M. Berezin
AU  - V. A. Greshnyakov
TI  - Ab initio calculations of structures and properties of diamond-like phases, obtained from nanotubes and 3D-graphites
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 469
EP  - 482
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a8/
LA  - ru
ID  - CHFMJ_2017_2_4_a8
ER  - 
%0 Journal Article
%A E. A. Belenkov
%A V. M. Berezin
%A V. A. Greshnyakov
%T Ab initio calculations of structures and properties of diamond-like phases, obtained from nanotubes and 3D-graphites
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 469-482
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a8/
%G ru
%F CHFMJ_2017_2_4_a8
E. A. Belenkov; V. M. Berezin; V. A. Greshnyakov. Ab initio calculations of structures and properties of diamond-like phases, obtained from nanotubes and 3D-graphites. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 469-482. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a8/

[1] H. O. Pierson (ed.), Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Application, Noyes, Park Ridge, New Jersey, 1993, 402 pp.

[2] E. A. Belenkov, V. A. Greshnyakov, “Classification schemes of carbon phases and nanostructures”, New Carbon Materials, 28:4 (2013), 273–283

[3] E.A. Belenkov, V.A. Greshnyakov, “Classification of structural modifications of carbon”, Physics of the Solid State, 55:8 (2013), 1754–1764

[4] L.V. Radushkevich, V.M. Luk’yanovich, “On carbon structure which formed during the thermal decomposition of carbon monoxide on an iron contact”, Phisical chemistry journal, 26 (1952), 88–95 (In Russ.)

[5] W. R. Davis, R. J. Slawson, G. R. Rigby, “An unusual form of carbon”, Nature, 171 (1953), 756

[6] A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscope observations of graphitized carbon fibers”, Carbon, 14 (1976), 133–135

[7] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58

[8] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363 (1993), 603–605

[9] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin, 2001, 453 pp.

[10] L. Day (ed.), Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, Elsevier, Amsterdam, Oxford, 2006, 733 pp.

[11] F. Cataldo, T. da Ros (eds.), Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Carbon Materials, v. 1, Chemistry and Physics, Springer Science + Business Media B.V., Dordrecht, 2008, 411 pp.

[12] R. Klingeler, R. B. Sim (eds.), Carbon Nanotubes for Biomedical Applications, Carbon Nanostructures, Springer-Verlag, Berlin, Heidelberg, 2011, xiii+278 pp.

[13] L. Cao, C. Gao, H. Sun [et al.], “Synthesis of diamond from carbon nanotubes under high pressure and high temperature”, Carbon, 39:2 (2001), 311–314

[14] F. Zhang, J. Shen, J. Sun, D. G. McCartney, “Direct synthesis of diamond from low purity carbon nanotubes”, Carbon, 44 (2006), 3136–3138

[15] S. Reich, P. Ordejon, R. Wirth [et al.], “Hexagonal diamond from single-walled carbon nanotubes”, AIP Conference Proceedings, 685 (2003), 164–168

[16] Z. Wang, Y. Zhao, K. Tait [et al.], “A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes”, Proceedings of the National Academy of Sciences, 101:38 (2004), 13699–13702

[17] M. Popov, M. Kyotani, Y.`Koga, “Superhard phase of single wall carbon nanotube: comparison with fullerite C${}_{60}$ and diamond”, Diamond and Related Materials, 12 (2003), 833–839

[18] V. N. Khabashesku, Z. Gu, B. Brinson [et al.], “Polymerization of single-wall carbon nanotubes under high pressures and high temperatures”, The Journal of Physical Chemistry B., 106:43 (2002), 11155–11162

[19] V. D. Blank, V. N. Denisov, A. N. Kirichenko [et al.], “Nanostructured superhard carbon phase obtained under high pressure with shear deformation from single-wall nanotubes HiPco”, Physica B: Condensed Matter, 382:1–2 (2006), 58–64

[20] D. Liu, M. Yao, Q. Li [et al.], “High pressure and high temperature induced polymerization of C${}_{60}$ nanotubes”, CrystEngComm, 13 (2011), 3600–3605

[21] R. H. Baughman, D. S. Galvao, “Tubulanes: carbon phases based on cross-linked fullerene tubules”, Chemical Physics Letters, 211:1 (1993), 110–118

[22] H. S. Domingos, “Carbon allotropes and strong nanotube bundles”, Journal of Physics: Condensed Matter, 16 (2004), 9083–9091

[23] M. Hu, Z. Zhao, F. Tian [et al.], “Compressed carbon nanotubes: a family of new multifunctional carbon allotropes”, Scientific Reports, 3 (2013), 1331

[24] Y. Omata, Y. Yamagami, K. Tadano, T.`Miyake, S. Saito, “Nanotube nanoscience: a molecular-dynamics study”, Physica E., 29 (2005), 454–468

[25] Z. Zhao, B. Xu, X.-F. Zhou [et al.], “Novel superhard carbon: c-centered orthorhombic C8”, Physical Review Letters, 107 (2011), 215502

[26] Z. S. Zhao, X.-F. Zhou, M. Hu [et al.], “High-pressure behaviors of carbon nanotubes”, Journalof Superhard Materials, 34:6 (2012), 371—385

[27] E. A. Belenkov, V. A. Greshnyakov, “Structures and properties of diamond-like phases derived from carbon nanotubes and three-dimensional graphites”, Journal of Materials Science, 50:23 (2015), 7627–7635

[28] E. A. Belenkov, V. A. Greshnyakov, “Structures of diamond-like phases”, Journal of Experimental and Theoretical Physics, 113:1 (2011), 86–95

[29] E. A. Belenkov, V. A. Greshnyakov, “New structural modifications of diamond: LA9, LA10, and CA12”, Journal of Experimental and Theoretical Physics, 119:1 (2014), 101–106

[30] P. Hohenberg, W. Kohn, “Inhomogeneous electron gas”, Physical Review, 136:3B (1964), 864–871

[31] J. P. Perdew, A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems”, Physical Review B., 23:10 (1981), 5048–5079

[32] K. Li, X. Wang, F. Zhang, D. Xu, “Electronegativity identification of novel superhard materials”, Physical Review Letters, 100 (2008), 235504

[33] E. A. Belenkov, V. A. Greshnyakov, “Diamond-like phases derived from graphene layers”, Physics of the Solid State, 57:1 (2015), 205–212

[34] E. A. Belenkov, M. M. Brzhezinskaya, V. A. Greshnyakov, “Crystalline structure and properties of diamond-like materials”, Nanosystems: Physics, Chemistry, Mathematics, 8:1 (2017), 127–136

[35] C. A. Brookes, E. J. Brookes, “Diamond in perspective: a review of mechanical properties of natural diamond”, Diamond and Related Materials, 1 (1991), 13–17

[36] N. N. Matyushenko, V. E. Strel'nitskii, V. A. Gusev, “A dense new version of crystalline carbon C${}_8$”, JETP Letters, 30:4 (1979), 199–202

[37] X. Zhao, Y. Liu, S. Inoue [et al.], “Smallest carbon nanotube is 3Åin diameter”, Physical Review Letters, 92:12 (2004), 125502

[38] L. Guan, K. Suenaga, S. Iijima, “Smallest carbon nanotube assigned with atomic resolution accuracy”, Nano Letters, 8:2 (2008), 459–462

[39] L.-M. Peng, Z. L. Zhang, Z. Q. Xue [et al.], Stability of carbon nanotubes: How small can they be?, Physical Review Letters, 85:15 (2000), 3249–3252

[40] L. F. Sun, S. S. Xie, W. Liu [et al.], “Creating the narrowest carbon nanotubes”, Nature, 403 (2000), 384

[41] S. Rols, I. N. Goncharenko, R. Almairac [et al.], “Polygonization of single-wall carbon nanotube bundles under high pressure”, Physical Review B., 64 (2001), 153401

[42] T. Yildirim, O. Gulseren, C. Kilic, S. Ciraci, “Pressure-induced interlinking of carbon nanotubes”, Physical Review B., 62:19 (2000), 12648–12651

[43] Y. Omata, Y. Yamagami, K. Tadano [et al.], “Nanotube nanoscience: a molecular-dynamics study”, Physica E., 29 (2005), 454–468

[44] S. F. Braga, D. S. Galvao, “Single wall carbon nanotubes polymerization under compression: an atomistic molecular dynamics study”, Chemical Physics Letters, 419 (2006), 394–399

[45] Z. Ya. Kosakovskaya, L. A. Chernozatonskii, E. A. Fedorov, “Nanofilament carbon structure”, JETP Letters, 56:1 (1992), 26–30

[46] A. V. Krasheninnikov, K. Nordlund, J. Keinonen, F. Banhart, “Ion-irradiation-induced welding of carbon nanotubes”, Physical Review B., 66 (2002), 245403

[47] F. P. Bundy, W. A. Bassett, M. S. Weathers [et al.], “The pressure-temperature phase and transformation diagram for carbon; updated through 1994”, Carbon, 34:2 (1996), 141–153

[48] V.A. Greshnyakov, E.A. Belenkov, “Investigation on the formation of lonsdaleite from graphite”, Journal of Experimental and Theoretical Physics, 124:2 (2017), 265–274