Compression pulse attenuation in polymethylmethacrylate
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 456-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical investigation is carried out in viscoelastic and hydrodynamic approximations of the shock waves dynamics, which arising in the case of a plane high-velocity impact of plate, and also when pressure pulses of micro-, nano- and picosecond durations are applied to the polymethylmethacrylate (PMMA) surface. For PMMA, the difference in amplitude between calculations in the hydrodynamic and the viscoelastic approximations is about 20%. The amplitude of the shock compression pulse in the viscoelastic approximation, in comparison with the hydrodynamic one, is greater for shallow depths due to additional rigidity, and is smaller for large depths due to the higher propagation velocity of the unloading wave catching the front of the shock wave. An investigation was made for the compression pulse attenuation in model polymers with variable parameters of the viscoelasticity model. The increase in the relaxation time and the yield point leads to a transition to the elastic behavior. At the same time, even for small relaxation times and yield limits, the damping curves at large depths differ from the hydrodynamic approximation due to the higher velocity of the unloading wave.
Keywords: shock compression pulse, shock wave, Maxwell model of viscoelastic media, polymethylmethacrylate.
@article{CHFMJ_2017_2_4_a7,
     author = {T. V. Popova and A. E. Mayer and K. V. Khishchenko},
     title = {Compression pulse attenuation in polymethylmethacrylate},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {456--469},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a7/}
}
TY  - JOUR
AU  - T. V. Popova
AU  - A. E. Mayer
AU  - K. V. Khishchenko
TI  - Compression pulse attenuation in polymethylmethacrylate
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 456
EP  - 469
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a7/
LA  - ru
ID  - CHFMJ_2017_2_4_a7
ER  - 
%0 Journal Article
%A T. V. Popova
%A A. E. Mayer
%A K. V. Khishchenko
%T Compression pulse attenuation in polymethylmethacrylate
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 456-469
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a7/
%G ru
%F CHFMJ_2017_2_4_a7
T. V. Popova; A. E. Mayer; K. V. Khishchenko. Compression pulse attenuation in polymethylmethacrylate. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 4, pp. 456-469. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_4_a7/

[1] S.A. Abrosimov , A.P. Bazhulin , V.V. Voronov , I.K. Krasyuk , P.P. Pashinin , A.Yu. Semenov , I.A. Stuchebryukhov , K.V. Khishchenko, “Study of mechanical properties of aluminum, AMg6M alloy, and polymethyl methacrylate at high strain rates under the action of picosecond laser radiation”, Doklady Physics, 57 (2012), 64–66

[2] S.A. Abrosimov , A.P. Bazhulin , V.V. Voronov ,A.A. Geras’kin, I.K. Krasyuk , P.P. Pashinin , A.Yu. Semenov , I.A. Stuchebryukhov , K.V. Khishchenko, V.E. Fortov, “Specific fea-tures of the behaviour of targets under negative pressures created by a picosecond laser pulse”, Quantum Electronics, 43:3 (2013), 246–251

[3] Ya. B. Zel’dovich, Yu. P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 2002, 478 pp.

[4] R. G. McQueen, S. P. Marsh, “Ultimate Yield Strength of Copper”, Journal of Applied Physics, 33:2 (1962), 654–665

[5] A. E. Mayer, K. V. Khishchenko, P. R. Levashov, P. N. Mayer, “Modeling of plasticity and fracture of metals at shock loading”, Journal of Applied Physics, 113 (2013), 193508

[6] T. V. Popova, A. E. Mayer, K. V. Khishchenko, “Numerical investigations of shock wave propagation in polymethylmethacrylate”, Journal of Physics: Conference Series, 653 (2015), 012045

[7] T.V. Popova ,A.E. Mayer , K.V. Khishchenko, “Modeling the propagation of shock waves over polymethylmethacrylate”, Proceedings of the Kabardino-Balkarian State University, 4:3 (2014), 109–114 (In Russ.)

[8] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, v. 6, 2, Heinemann, Butterworth, 1987, 552 pp.

[9] L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, v. 7, 3, Heinemann, Butterworth, 1986, 172 pp.

[10] I.V. Lomonosov , V.E. Fortov , K.V. Khishchenko, Chemical Physics Reports, 14:1–3 (1995), 51–57 (In Russ.)

[11] K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, “Equations of state for organic compounds over wide range of densities and pressures”, Shock Compression of Condensed Matter—1995, eds. Schmidt S. C., Tao W. C., AIP Press, N. Y., 1996, 125–128

[12] L. M. Barker, R. E. Hollenbach, “Shock-wave studies of PMMA, fused silica, and sapphire”, Journal of Applied Physics, 41:10 (1970), 4208–4226

[13] A.A. Bakanova ,I.P. Dudoladov , R.F. Trunin, “Compression of alkali metals by strong shock waves”, Physics of Solid State, 7 (1965), 1615–1623

[14] M. van Thiel, J. Shaner, E. Salinas, Compendium of Shock Wave Data. Compendium Index, Report UCRL-50108, Livermore National Lab Ca, 1977, 528–539

[15] S. P. Marsh, LASL Shock Hugoniot Data, University of California Press, Berkeley, 1980, 658 pp.

[16] R.F. Trunin, “Shock compressibility of condensed matters in strong shock waves caused by un-derground nuclear explosions”, Physics–Uspekhi, 37 (1994), 1123–1145

[17] L.A. Maksanova , O.Zh. Ayurova, Polymer compounds and their applications, ESSTU Publ., Ulan-Ude, 2004, 356 pp. (In Russ.)

[18] M. Farshad, M. W. Wildenberg, P. Fliieler, “Determination of shear modulus and Poisson's ratio of polymers and foams by the anticlastic plate-bending method”, Materials and Structures, 30 (1997), 377–382

[19] G.I. Kanel ,S.V. Razorenov , A.V. Utkin , V.E. Fortov, Shock-Wave Phenomena in Condensed Media, Janus-K Publ., Moscow, 1996, 408 pp. (In Russ.)