Correspondence analysis for logic of rational agent
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 329-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine Kubyshkina Zaitsev's Logic of Rational Agent (LRA) from a proof-theoretic point of view. We present three natural deduction systems for LRA which differ from Kubyshkina Zaitsev's axiomatization of LRA. Moreover, we introduce a general method for axiomatizing LRA's unary and binary truth-functional extensions via natural deduction systems. This method is Kooi Tamminga's correspondence analysis which we adapt for LRA.
Keywords: many-valued logics, generalized truth values, correspondence analisys, natural deduction systems.
@article{CHFMJ_2017_2_3_a6,
     author = {Ya. I. Petrukhin},
     title = {Correspondence analysis for logic of rational agent},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a6/}
}
TY  - JOUR
AU  - Ya. I. Petrukhin
TI  - Correspondence analysis for logic of rational agent
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 329
EP  - 337
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a6/
LA  - en
ID  - CHFMJ_2017_2_3_a6
ER  - 
%0 Journal Article
%A Ya. I. Petrukhin
%T Correspondence analysis for logic of rational agent
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 329-337
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a6/
%G en
%F CHFMJ_2017_2_3_a6
Ya. I. Petrukhin. Correspondence analysis for logic of rational agent. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a6/

[1] E. Kubyshkina, D.V. Zaitsev, “Rational agency from a truth-functional perspective”, Logic and Logical Philosophy, 25:4 (2016), 499–520 | MR | Zbl

[2] J.M. Dunn, “Intuitive semantics for first-degree entailment and coupled trees”, Philosophical Studies, 29:3 (1976), 149–168 | DOI | MR

[3] N.D. Belnap, “Tautological entailments”, The Journal of Symbolic Logic, 24:4 (1959), 316

[4] A.R. Anderson ,N.D. Belnap, “Tautological entailments”, Philosophical Studies, 13:1–2 (1962), 9–24 | DOI | MR

[5] N.D. Belnap, “A useful four-valued logic”, Modern Uses of Multiple-Valued Logic, 1977, 7–37, Reidel Publishing Company, Boston | MR

[6] N.D. Belnap, “How a computer should think”, Contemporary Aspects of Philosophy, ed. G. Rule, Oriel Press, Stocksfield, 1977, 30–56

[7] Y. Shramko , J.M. Dunn , T. Takenaka, “The trilatice of constructive truth values”, Journal of Logic and Computation, 11:6 (2001), 761–788 | DOI | MR | Zbl

[8] Y. Shramko , H. Wansing, “Some useful 16-valued logics: How a computer network should think”, Journal of Philosophical Logic, 34:2 (2005), 121–153 | DOI | MR | Zbl

[9] D.V. Zaitsev , O.M. Grigoriev, “Relevant Generalization Starts Here (and Here = 2)”, Logic and Logical Philosophy, 19:4 (2010), 329–340 | DOI | MR | Zbl

[10] D.V. Zaitsev, O.M.Grigoriev, “Two kinds of truth — one logic”, Logical Investigations, 17 (2011), 121–139 (In Russ.) | MR | Zbl

[11] D.V. Zaitsev, Y. Shramko, “Bi-facial truth: A case for generalized truth values”, Studia Logica, 101:6 (2013), 299–318 | DOI | MR

[12] D.V. Zaitsev, “A few more useful 8-valued logics for reasoning with tetralattice EIGHT4”, Studia Logica, 92:2 (2009), 265–280 | DOI | MR | Zbl

[13] O.M. Grigoriev, “Generalized Truth Values: From Logic to the Applications in Cognitive Sciences”, Lecture Notes in Computer Science, 9719, 2016, 712–719 | DOI

[14] S. Wintein, R.A. Muskens, “From bi-facial truth to bi-facial proofs”, Studia Logica, 103:3 (2015), 545–558 | DOI | MR | Zbl

[15] E. Kubyshkina, “Logic of rational subject”, Proceedings of International scientific conference "Days of science of Philosophical department" , v. 10, 2011, 43–45

[16] D.V. Zaitsev, “Proto-Entailment in RS logic”, Logical Investigations, 19 (2013), 260–270 | MR | Zbl

[17] B. Kooi, A. Tamminga, “Completeness via correspondence for extensions of the logic of paradox”, The Review of Symbolic Logic, 5:4 (2012), 720–730 | DOI | MR | Zbl

[18] F.G. Asenjo, A calculus of antinomies', Notre Dame Journal of Formal Logic, 7:1 (1966), 103–105 | DOI | MR | Zbl

[19] G. Priest, “The logic of paradox”, Journal of Philosophical Logic, 8:1 (1979), 219–241 | DOI | MR | Zbl

[20] G. Priest, “Paraconsistent logic”, Handbook of philosophical logic, v. 6, 2, eds. M. Gabbay, F. Guenthner, Kluwer, Dordrecht, 2002, 287–393 | MR

[21] A. Tamminga, “Correspondence analysis for strong three-valued logic”, Logical Investigations, 2014, no. 20, 255–268 | MR | Zbl

[22] S.C. Kleene, “On a notation for ordinal numbers”, Journal of Symbolic Logic, 3:4 (1938), 150–155 | DOI | MR

[23] Y.I. Petrukhin, “Correspondence analysis for first degree entailment”, Logical Investigations, 22:1 (2016), 108–124 | MR | Zbl

[24] L. Henkin, “The completeness of the first-order functional calculus”, Journal of Symbolic Logic, 14:3 (1949), 159–166 | DOI | MR | Zbl