Mining entity identification rules based on decision tree
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 372-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

During the integration or unification of heterogeneous information systems it is required to identify entities which describe the same real world entity in different information systems. This problem cannot be effectively solved by deterministic algorithms. This paper describes a machine learning based approach for obtaining entity identification rules based on decision trees.
Keywords: entity identification, entity resolution, matching, machine learning, decision tree, information systems integration.
@article{CHFMJ_2017_2_3_a11,
     author = {M. A. Karpov},
     title = {Mining entity identification rules based on decision tree},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {372--377},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a11/}
}
TY  - JOUR
AU  - M. A. Karpov
TI  - Mining entity identification rules based on decision tree
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 372
EP  - 377
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a11/
LA  - ru
ID  - CHFMJ_2017_2_3_a11
ER  - 
%0 Journal Article
%A M. A. Karpov
%T Mining entity identification rules based on decision tree
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 372-377
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a11/
%G ru
%F CHFMJ_2017_2_3_a11
M. A. Karpov. Mining entity identification rules based on decision tree. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 372-377. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a11/

[1] J. R. Talburt, Entity resolution and information quality, Morgan Kaufmann, Amsterdam, 2011, 256 pp.

[2] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, “Duplicate record detection: A survey”, IEEE Transactions of Knowledge Data Engineering, 19:1 (2007), 1–16 | DOI

[3] E. P. Lim, J. Srivastava, S. Prabhakar, J. Richardson, “Entity identification in database integration”, Ninth International Conference on Data Engineering: Proceedings (April 19–23, 1993, Vienna, Austria/92-75329), 1993, 294–301 | DOI

[4] L. Li, J. Li, H. Gao, “Rule-based method for entity resolution”, IEEE Transactions of Knowledge Data Engineering, 27:1 (2015), 250–263 | DOI

[5] M. Ganesh, J. Srivastava, T. Richardson, “Mining entity identification rules for database integration”, KDD'96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (August 2–4, Portland, Oregon, 1996), 1996, 291–294

[6] Y. R. Wang, S. E. Madnick, “The inter-database instance identification problem in integrating autonomous systems”, Proceedings. Fifth International Conference on Data Engineering (February 06–10, Los Angeles, USA, 1989), 1989, 46–55 | DOI