Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_3_a1, author = {A. A. Ershov and M. I. Rusanova}, title = {Asymptotics of a boundary-value problem solution for the {Laplace} equation with type changing of the boundary condition on two small sites}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {266--281}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/} }
TY - JOUR AU - A. A. Ershov AU - M. I. Rusanova TI - Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2017 SP - 266 EP - 281 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/ LA - ru ID - CHFMJ_2017_2_3_a1 ER -
%0 Journal Article %A A. A. Ershov %A M. I. Rusanova %T Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites %J Čelâbinskij fiziko-matematičeskij žurnal %D 2017 %P 266-281 %V 2 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/ %G ru %F CHFMJ_2017_2_3_a1
A. A. Ershov; M. I. Rusanova. Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 266-281. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/
[1] R.R. Gadyl'shin, “Splitting a multiple eigenvalue in the boundary value problem for a membrane clamped on a small part of the boundary”, Siberian Mathematical Journal, 34:3 (1993), 433–450 | DOI | MR | Zbl
[2] R.R. Gadyl'shin, “On the perturbation of the Laplacian spectrum when the boundary condition type changes on a small part of the boundary”, Computational Mathematics and Mathematical Physics, 36:7 (1996), 889–898 | MR | Zbl
[3] A.A.Ershov, “Asymptotics of the solution of Laplace’s equation with mixed boundary conditions”, Computational Mathematics and Mathematical Physics, 51:6 (2011), 994–1010 | DOI | MR | Zbl
[4] R.R. Gadyl'shin , A.A.Ershov , S.V. Repyevsky, “On asymptotic formula for electric resistance of conductor with small contacts”, Ufa Mathematical Journal, 7:3 (2015), 15–27 | DOI | MR
[5] K. Miranda, Equazioni alle derivate parziali di tipo elliptico, Springer-Verlag, Berlin, G$\ddot{\rm o}$ttingen, Heidelberg, 1955, 222 pp. (In Italian) | MR
[6] S. Zaremba, “Sur un problème mixte relatif a l'équation de Laplace”, Bulletin de l'Académie des sciences de Cracovie. Classe des sciences mathématiques et naturelles. Série A., 1910, 313–344 | Zbl
[7] A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, AMS, Providence, Rhode Island, 1992, 281 pp. | MR | Zbl
[8] G.P$\acute{\rm o}$lya, G.Szeg$\ddot{\rm o}$, Isoperimetric Inequalities in Mathematical physics., Princeton Univ. Press, Princeton, 1951, 279 pp. | MR | MR
[9] N.S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972, 424 pp. | MR | MR | Zbl
[10] L.D. Landau, E.M. Lifschitz, Theoretical Physics, v. VIII, Electrodynamics of Continuous Media, Pergamon press, Oxford, London, New York, Paris, 1960, 417 pp. | MR | MR
[11] A. M. Il’in, Equations of mathematical physics, Fizmatlit Publ., Moscow, 2009, 192 pp. (In Russ.)
[12] O.A. Oleinik, “On the stability of the Neumann problem”, Successes of mathematical sciences, 11:1(67) (1956), 223–225 (In Russ.) | MR | Zbl