Asymptotics of a boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 266-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a harmonic function in a three-dimensional bounded domain. The normal derivative is given on almost the entire boundary, excepting two small sections, on which the value of the function itself is specified. For such a harmonic function, by the method of matching asymptotic expansions, a two-scale asymptotics with respect to a small parameter characterizing the size of the mentioned boundary sections is constructed and justified. The physical application of the obtained decomposition is given.
Keywords: boundary value problem, Laplace equation, asymptotic expansion, mixed problem, small parameter, matching method, electrical resistance.
@article{CHFMJ_2017_2_3_a1,
     author = {A. A. Ershov and M. I. Rusanova},
     title = {Asymptotics of a  boundary-value problem solution for the {Laplace} equation with type changing of the boundary condition on two small sites},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {266--281},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/}
}
TY  - JOUR
AU  - A. A. Ershov
AU  - M. I. Rusanova
TI  - Asymptotics of a  boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 266
EP  - 281
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/
LA  - ru
ID  - CHFMJ_2017_2_3_a1
ER  - 
%0 Journal Article
%A A. A. Ershov
%A M. I. Rusanova
%T Asymptotics of a  boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 266-281
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/
%G ru
%F CHFMJ_2017_2_3_a1
A. A. Ershov; M. I. Rusanova. Asymptotics of a  boundary-value problem solution for the Laplace equation with type changing of the boundary condition on two small sites. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 3, pp. 266-281. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_3_a1/

[1] R.R. Gadyl'shin, “Splitting a multiple eigenvalue in the boundary value problem for a membrane clamped on a small part of the boundary”, Siberian Mathematical Journal, 34:3 (1993), 433–450 | DOI | MR | Zbl

[2] R.R. Gadyl'shin, “On the perturbation of the Laplacian spectrum when the boundary condition type changes on a small part of the boundary”, Computational Mathematics and Mathematical Physics, 36:7 (1996), 889–898 | MR | Zbl

[3] A.A.Ershov, “Asymptotics of the solution of Laplace’s equation with mixed boundary conditions”, Computational Mathematics and Mathematical Physics, 51:6 (2011), 994–1010 | DOI | MR | Zbl

[4] R.R. Gadyl'shin , A.A.Ershov , S.V. Repyevsky, “On asymptotic formula for electric resistance of conductor with small contacts”, Ufa Mathematical Journal, 7:3 (2015), 15–27 | DOI | MR

[5] K. Miranda, Equazioni alle derivate parziali di tipo elliptico, Springer-Verlag, Berlin, G$\ddot{\rm o}$ttingen, Heidelberg, 1955, 222 pp. (In Italian) | MR

[6] S. Zaremba, “Sur un problème mixte relatif a l'équation de Laplace”, Bulletin de l'Académie des sciences de Cracovie. Classe des sciences mathématiques et naturelles. Série A., 1910, 313–344 | Zbl

[7] A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, AMS, Providence, Rhode Island, 1992, 281 pp. | MR | Zbl

[8] G.P$\acute{\rm o}$lya, G.Szeg$\ddot{\rm o}$, Isoperimetric Inequalities in Mathematical physics., Princeton Univ. Press, Princeton, 1951, 279 pp. | MR | MR

[9] N.S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972, 424 pp. | MR | MR | Zbl

[10] L.D. Landau, E.M. Lifschitz, Theoretical Physics, v. VIII, Electrodynamics of Continuous Media, Pergamon press, Oxford, London, New York, Paris, 1960, 417 pp. | MR | MR

[11] A. M. Il’in, Equations of mathematical physics, Fizmatlit Publ., Moscow, 2009, 192 pp. (In Russ.)

[12] O.A. Oleinik, “On the stability of the Neumann problem”, Successes of mathematical sciences, 11:1(67) (1956), 223–225 (In Russ.) | MR | Zbl