Thin shell Schwarzschild-phantom wormhole stability
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 245-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been suggested that a possible candidate for the present accelerated expansion of the Universe is "phantom energy" . The latter possesses an equation of state of the form $\omega =p/\rho -1$, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. Recently, it has been shown by Lobo that phantom energy with $\omega =p_{r}/\rho -1$ could support phantom wormholes. Several classes of such solutions have been derived by him. While the inner spacetime is represented by asymptotically flat phantom wormhole that have repulsive gravity, it is most likely to be unstable to perturbations. Hence, we consider a situation, where a phantom wormhole is somehow trapped inside a Schwarzschild sphere across a thin shell. Applying the method developed by Garcia, Lobo and Visser (GLV), we shall exemplify that the shell can possess zones of stability depending on certain constraints.
Keywords: phantom wormhole, thin-shell technique, stability.
@article{CHFMJ_2017_2_2_a9,
     author = {R. Kh. Karimov and R. N. Izmailov},
     title = {Thin shell {Schwarzschild-phantom} wormhole stability},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {245--252},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a9/}
}
TY  - JOUR
AU  - R. Kh. Karimov
AU  - R. N. Izmailov
TI  - Thin shell Schwarzschild-phantom wormhole stability
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 245
EP  - 252
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a9/
LA  - en
ID  - CHFMJ_2017_2_2_a9
ER  - 
%0 Journal Article
%A R. Kh. Karimov
%A R. N. Izmailov
%T Thin shell Schwarzschild-phantom wormhole stability
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 245-252
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a9/
%G en
%F CHFMJ_2017_2_2_a9
R. Kh. Karimov; R. N. Izmailov. Thin shell Schwarzschild-phantom wormhole stability. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 245-252. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a9/

[1] M.S. Morris, K.S. Thorne, “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity”, American Journal of Physics, 56 (1988), 395–412 | DOI | MR | Zbl

[2] K.A. Bronnikov, J.C. Fabris, A. Zhidenko, “On the stability of scalar-vacuum space-times”, European Physics Journal C, 71 (2011), 1791 | DOI

[3] K.K. Nandi, A.A. Potapov, R.N. Izmailov, A. Tamang, J.C. Evans, Stability and instability of Ellis and phantom wormholes: Are there ghosts?, Physical Reviews D, 93 (2016), 104044 | DOI | MR

[4] M. Watanabe, S. Kanno, J. Soda, “Inflationary Universe with anisotropic hair”, Physical Review Letters, 102 (2009), 191302 | DOI

[5] F.S.N. Lobo, F. Parsaei, N. Riazi, “New asymptotically flat phantom wormhole solutions”, Physical Reviews D, 87 (2013), 084030 | DOI

[6] A.G. Riess, et al., “Observational evidence from supernovae for an accelerating Universe and a cosmological constant”, Astrophysics Journal, 116 (1998), 1009

[7] S. Perlmutter, et al., “Measurements of omega and lambda from 42 high-redshift supernovae”, Astrophysics Journal, 517 (1999), 565 | DOI

[8] P.J.E. Peebles, B. Ratra, “The cosmological constant and dark energy”, Reviews of Modern Physics, 75 (2003), 559 | DOI | MR | Zbl

[9] N.M. Garcia, F.S.N. Lobo, M. Visser, “Generic spherically symmetric dynamic thin-shell traversable wormholes in standard general relativity”, Physical Reviews D, 86 (2012), 044026 | DOI

[10] A. Khaybullina, G. Akhtaryanova, R. Mingazova, D. Saha, R. Izmailov, “Stability of the thin-shell Schwarzschild-Ellis wormhole”, Physical Reviews D, 93 (2016), 104044 | DOI

[11] R. Lukmanova, A. Khaibullina, R. Izmailov, A. Yanbekov, R. Karimov, A. Potapov, “Note on the Schwarzschild-phantom wormhole”, Indian Journal of Physics, 90 (2016), 1319–1323 | DOI

[12] F.S.N. Lobo, “Phantom energy traversable wormholes”, Physical Reviews D, 71 (2005), 084011 | DOI | MR