Bounded integral operators in some weighted spaces of analytic functions on product domains and related results
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 210-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The expository article overviews new research results presented by the authors and their colleagues regarding to the existence problem of bounded projections of functions on weighted spaces in $n$-dimensional complex space $C^n.$ New extensions are discussed. Some new interesting problems in analytic spaces on product domains are also provided. In addition, we shortly review new results of other authors working in this direction.
Keywords: bounded projection, weighted space, integral representation, polydisk, unit ball, polyball, pseudoconvex domain, tubular domain.
@article{CHFMJ_2017_2_2_a6,
     author = {R. F. Shamoyan and S. P. Maksakov},
     title = {Bounded integral operators in some weighted spaces of analytic functions on product domains and related results},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {210--230},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - S. P. Maksakov
TI  - Bounded integral operators in some weighted spaces of analytic functions on product domains and related results
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 210
EP  - 230
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/
LA  - en
ID  - CHFMJ_2017_2_2_a6
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A S. P. Maksakov
%T Bounded integral operators in some weighted spaces of analytic functions on product domains and related results
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 210-230
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/
%G en
%F CHFMJ_2017_2_2_a6
R. F. Shamoyan; S. P. Maksakov. Bounded integral operators in some weighted spaces of analytic functions on product domains and related results. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 210-230. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/

[1] S.V. Shvedenko, “Hardy classes and related spaces of analytic functions in the unit disk, unit ball and polydisc”, Results of science and technics. Ser. Mathematical analysis, 23 (1985), 3–124 (In Russ.) | MR | Zbl

[2] M.M. Djrbashian, “On canonical representation of meromorphic functions in the unit disk”, Reports of the Academy of sciences of Armenian SSR, 3:1 (1945), 3–9 (In Russ.)

[3] M.M. Djrbashian, “On the problem of representation of analytic functions”, Reports of Institute of Mathematics and Mechanics of Armenian SSR, 2 (1948), 3–35 (In Russ.)

[4] F.A. Shamoyan, “Diagonal mapping and some problems pf the representation in the anisotropic spaces of holomorphic in the polydisc functions”, Reports of the Academy of sciences of Armenian SSR, 85:1 (1987), 21–26 (In Russ.) | MR

[5] F.A. Shamoyan, “Diagonal mapping and problems of representation in anisotropic spaces of holomorphic functions in the polydisk”, Siberian Mathematical Journal, 31:2 (1990), 350–365 | DOI | MR | Zbl

[6] E. Seneta, Regularly Varying Functions, Springer–Verlag, Berlin, Heidelberg, New York, 1976, 112 pp. | MR | Zbl

[7] F.A. Shamoyan , O.V. Yaroslavtseva, “Continuous projections, duality and the diagonal map in weighted spaces of holomorphic functions with mixed norm”, Notes of the scientific workshops of POMI, 247, 1997, 268–275 (In Russ.) | MR | Zbl

[8] O.V. Yaroslavtseva, Some issues of representation in the weighted spaces of holomorphic and the $n$-harmonic functions with the mixed norm, PhD Thesis, Bryansk, 1999 (In Russ.)

[9] R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L_p$”, Astérisque, 77 (1980), 11–66 | MR | Zbl

[10] F. Forelli , W. Rudin, “Projections on spaces of holomorphic functions in balls”, Indiana University Mathematical Journal, 24 (1975), 593–602 | DOI | MR

[11] F.A. Shamoyan , N.A. Chasova, Bounded projectors and continuous linear functionals on the weighted spaces of analytic functions with mixed norm in a polydisc, Preprint., Bryansk State University, Bryansk, 2002 (In Russ.)

[12] N.A. Chasova, Integral representation, duality and Toeplitz operators in weighted anisotropic spaces of holomorphic functions with mixed norm in a polydisc, PhD Thesis, Bryansk, 2003 (In Russ.)

[13] W.S. Cohn, “Weighted Bergman projection and tangential area integrals”, Studia Mathematica, 106:1 (1993), 59–76 | MR | Zbl

[14] W.S. Cohn, “Bergman projection and Hardy spaces”, Journal of Functional Analysis, 144 (1997), 1–19 | DOI | MR | Zbl

[15] J. Ortega, J. Fabrega, “Holomorphic Triebel — Lizorkin type spaces”, Journal of Functional Analysis, 151:1 (1997), 177–212 | DOI | MR | Zbl

[16] O.E. Antonenkova, Reproducing kernels, Cauchy transform of continuous linear functionals on the weighted spaces of holomorphic functions, PhD Thesis, Bryansk, 2005 (In Russ.) | MR

[17] E.V. Povprits, Characterization of the traces and the Cauchy transform continuous linear functionals in anisotropic weighted spaces of analytic functions with mixed norm, PhD Thesis, Bryansk, 2015 (In Russ.)

[18] R.F. Shamoyan, O. Mihic, “On traces of holomorphic functions in polyballs”, Applied Analysis and Discrete Mathematics, 3 (2009), 42–48 | MR | Zbl

[19] R.F. Shamoyan, O. Mihic, “On traces of $Q_p$ type spaces and mixed norm analytic function spaces in polyballs”, Siauliau Mathematical Seminar, 5:13 (2010), 101–119 | MR | Zbl

[20] R.F. Shamoyan, O. Mihic, “In search of traces of some holomorphic spaces on polyballs”, Revista Notas Venezolana, 4 (2010), 1–23 | MR

[21] R.F. Shamoyan, S.M. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $\mathbb C^n$”, Issues of analysis, 4:1 (2015), 73–94 | DOI | MR | Zbl

[22] R.F. Shamoyan, S.M. Kurilenko, “Bergman type integral operators on semiproducts of the tube domains over symmetric cones and multifunctionals analytic spaces”, Kragujevac Journal of Mathematics, 40:2 (2016), 194–222 | DOI | MR | Zbl

[23] R.F. Shamoyan, O. Mihic, “Analytic classes on expanded disk and Bergman-type integral operators on them”, Journal of Inequalities and Applications, 2009, 353801 | DOI | Zbl

[24] O.E. Antonenkova, F.A. Shamoyan, “The Cauchy transform of continuous linear functionals and projections on the weighted spaces of analytic functions”, Siberian Mathematical Journal, 46:6 (2005), 969–994 | DOI | MR | Zbl

[25] S. Gadbois, “Mixed norm generalization of Bergman spaces and duality”, Proceedings of American Mathematical Society, 104:4 (1988), 1171–1180 | DOI | MR | Zbl

[26] B.F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proceedings of Edinburg Mathematical Society, 52:2 (2009), 529–544 | DOI | MR | Zbl

[27] D. Gu, “Bergman projections and duality in weighted mixed-norm spaces of analytic functions”, Michigan Mathematical Journal, 39:1 (1992), 71–84 | DOI | MR | Zbl

[28] O.V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. I, II, John Wiley Sons, New York, Toronto, London, 1978, 1979 | MR | Zbl

[29] S.M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 420 pp. | MR

[30] R.F. Shamoyan, O. Mihic, “On some new analytic function spaces in polyball”, Palestine Journal of Mathematics, 4:1 (2015), 105–107 | MR | Zbl

[31] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2004, 271 pp. | MR

[32] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, Journal für die reine und angewandte Mathematik, 647 (2010), 25–56 | MR | Zbl

[33] R.F. Shamoyan, E.V. Povprits, “Sharp theorems on traces in analytic spaces in tube domains over symmetric cones”, Journal of Siberian Federal University. Series Mathematics and Physics, 6:4 (2013), 527–538

[34] A.E. Djrbashian, F.A. Shamoyan, Topics in the Theory of $A^p_{\alpha }$-Spaces, Leipzig, BSB B.G. Teubner, 1988 | MR | Zbl

[35] J. Xiao, Geometric $Q_p$ Functions, Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl

[36] J. Xiao, Holomorphic $Q$ Classes, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1767, 2001, 104 pp. | MR

[37] M. Andersson, H. Carlsson, “$Q_p$ spaces in strictly pseudoconvex domains”, Journal d'Analyse Mathematique, 84:1 (2001), 335–559 | DOI | MR

[38] R.F. Shamoyan, “On some problems connected with diagonal map in some spaces of analytic functions”, Mathematica Bohemica, 133:4 (2008), 351–366 | MR | Zbl

[39] S.Y. Li, W. Luo, “Characterizations for Besov spaces and applications, Part I”, Journal of Mathematical Analysis and Applications, 310 (2005), 477–491 | DOI | MR | Zbl

[40] A. Karapetyan, “Bounded projections in weighted function spaces in generalized unit disc”, Annales Polonici Mathematici, 462:3 (1995), 193–218 | MR

[41] D. Bekolle, A. Kagon, “Reproducing properties and $L^p$ estimates for Bergman projections in Siegel domains of type II”, Studia Mathematica, 15:3 (1995), 219–239 | MR

[42] S. Yamaji, “Composition operators on the Bergman space in minimal bounded domains”, Hiroshima Mathematical Journal, 43 (2003), 107–127 | MR

[43] M. Englis, T. Hanninen, J. Taskinen,, “Minimal $L^{\infty}$ type spaces on strictly pseudoconvex domains on which Bergman projection is continuous”, Houston Journal of Mathematics, 32:1 (2006), 253–275 | MR | Zbl

[44] S.Y. Li, W. Luo, “Analysis on Besov spaces II: Embedding duality theorems”, Journal of Mathematical Analysis and Applications, 333:2 (2007), 1189–1202 | DOI | MR | Zbl

[45] Ph. Charpentier, Y. Dupain, “Estimates for the Bergman and Szego projections for pseudoconvex domains of finite type with locally diagonalizable Levi Form”, Publicacions Matemàtiques, 50:2 (2006), 413–446 | DOI | MR | Zbl

[46] S. Cho, “A mapping property of the Bergman projection on certain pseudoconvex domains”, Tohoku Mathematical Journal, 48:4 (1996), 533–542 | DOI | MR | Zbl

[47] D. Ehsani, I. Lieb, “$L^p$ estimates for the Bergman projection on pseudoconvex domains”, Mathematische Nachrichten, 281:7 (2008), 916–929 | DOI | MR | Zbl

[48] R.F. Shamoyan, O. Mihic, “Some remarks on weakly invertible functions in the unit ball and polydisk”, Iranian Journal of Mathematical Sciences and Informatics, 4:1 (2009), 43–55 | MR

[49] H.R. Cho, J. Lee, “Inequalities for the integral means of holomorphic functions in the strongly pseudoconvex domain”, Communications of the Korean Mathematical Society, 20:2 (2005), 339–350 | DOI | MR | Zbl

[50] E. Ligocka, “On the Forelli — Rudin construction and weighted Bergman projections”, Studia Mathematica, 94 (1989), 257–272 | MR | Zbl

[51] H. Boas, “Holomorphic reproducing kernels in Reinhardt domains”, Pacific Journal of Mathematics, 112:2 (1984), 273–292 | DOI | MR | Zbl

[52] N.M. Tkachenko (Makhina), Weighted $L^p$ estimates analytic and harmonic functions in a simply connected domains of complex plane, PhD Thesis, Bryansk, 2009 (In Russ.)

[53] N.M. Tkachenko (Makhina), F.A. Shamoyan, “The Hardy — Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary”, Journal of Mathematical Physics, Analysis, Geometry, 5:2 (2009), 192–210 | MR | Zbl

[54] K. Hahn, J. Mitchell, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in $C^n$”, Journal of Mathematical Analysis and Applications, 56:2 (1976), 379–396 | DOI | MR | Zbl

[55] W. Chen, “Lipschitz spaces of holomorphic functions over bounded symmetric domains in $C^n$”, Journal of Mathematical Analysis and Applications, 81:1 (1981), 63–87 | DOI | MR | Zbl

[56] C. Nana, “$L^{p,q}$-boundedness of Bergman projections in homogeneous Sigel domains of type II”, Journal of Fourier Analysis and Applications, 19 (2013), 997–1019 | DOI | MR | Zbl

[57] S.G. Krantz, “A direct connection between the Bergman and Szego projections”, Complex Analysis and Operators Theory, 8 (2014), 571–579 | DOI | MR | Zbl

[58] D. Kalaj, M. Markovic, “Norm of the Bergman projection”, Mathematica Scandinavica, 115:1 (2014), 143–160 | DOI | MR | Zbl

[59] A. Bonami, G. Garrigos, C. Nana, “$L^p-L^q$ estimates for Bergman projections in bounded symmetric domains of tube type”, Journal of Geometric Analysis, 24:4 (2014), 1737–1769 | DOI | MR | Zbl

[60] A. Bonami, C. Nana, “Some questions related to the Bergman projection in symmetric domains”, Advances in Pure and Applied Mathematics, 6:4 (2015) | DOI | MR

[61] A.R. Legg, “The Khavinson — Shapiro conjecture and the Bergman projection in one and several complex variables”, Computational Methods and Function Theory, 16:2 (2015), 231–242 | DOI | MR

[62] J.Á. Peláez, J. Rättyä, On the boundedness of the Bergman projection, accessed 10.12.2016, arXiv: abs/1501.03957