Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHFMJ_2017_2_2_a6, author = {R. F. Shamoyan and S. P. Maksakov}, title = {Bounded integral operators in some weighted spaces of analytic functions on product domains and related results}, journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal}, pages = {210--230}, publisher = {mathdoc}, volume = {2}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/} }
TY - JOUR AU - R. F. Shamoyan AU - S. P. Maksakov TI - Bounded integral operators in some weighted spaces of analytic functions on product domains and related results JO - Čelâbinskij fiziko-matematičeskij žurnal PY - 2017 SP - 210 EP - 230 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/ LA - en ID - CHFMJ_2017_2_2_a6 ER -
%0 Journal Article %A R. F. Shamoyan %A S. P. Maksakov %T Bounded integral operators in some weighted spaces of analytic functions on product domains and related results %J Čelâbinskij fiziko-matematičeskij žurnal %D 2017 %P 210-230 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/ %G en %F CHFMJ_2017_2_2_a6
R. F. Shamoyan; S. P. Maksakov. Bounded integral operators in some weighted spaces of analytic functions on product domains and related results. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 210-230. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a6/
[1] S.V. Shvedenko, “Hardy classes and related spaces of analytic functions in the unit disk, unit ball and polydisc”, Results of science and technics. Ser. Mathematical analysis, 23 (1985), 3–124 (In Russ.) | MR | Zbl
[2] M.M. Djrbashian, “On canonical representation of meromorphic functions in the unit disk”, Reports of the Academy of sciences of Armenian SSR, 3:1 (1945), 3–9 (In Russ.)
[3] M.M. Djrbashian, “On the problem of representation of analytic functions”, Reports of Institute of Mathematics and Mechanics of Armenian SSR, 2 (1948), 3–35 (In Russ.)
[4] F.A. Shamoyan, “Diagonal mapping and some problems pf the representation in the anisotropic spaces of holomorphic in the polydisc functions”, Reports of the Academy of sciences of Armenian SSR, 85:1 (1987), 21–26 (In Russ.) | MR
[5] F.A. Shamoyan, “Diagonal mapping and problems of representation in anisotropic spaces of holomorphic functions in the polydisk”, Siberian Mathematical Journal, 31:2 (1990), 350–365 | DOI | MR | Zbl
[6] E. Seneta, Regularly Varying Functions, Springer–Verlag, Berlin, Heidelberg, New York, 1976, 112 pp. | MR | Zbl
[7] F.A. Shamoyan , O.V. Yaroslavtseva, “Continuous projections, duality and the diagonal map in weighted spaces of holomorphic functions with mixed norm”, Notes of the scientific workshops of POMI, 247, 1997, 268–275 (In Russ.) | MR | Zbl
[8] O.V. Yaroslavtseva, Some issues of representation in the weighted spaces of holomorphic and the $n$-harmonic functions with the mixed norm, PhD Thesis, Bryansk, 1999 (In Russ.)
[9] R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L_p$”, Astérisque, 77 (1980), 11–66 | MR | Zbl
[10] F. Forelli , W. Rudin, “Projections on spaces of holomorphic functions in balls”, Indiana University Mathematical Journal, 24 (1975), 593–602 | DOI | MR
[11] F.A. Shamoyan , N.A. Chasova, Bounded projectors and continuous linear functionals on the weighted spaces of analytic functions with mixed norm in a polydisc, Preprint., Bryansk State University, Bryansk, 2002 (In Russ.)
[12] N.A. Chasova, Integral representation, duality and Toeplitz operators in weighted anisotropic spaces of holomorphic functions with mixed norm in a polydisc, PhD Thesis, Bryansk, 2003 (In Russ.)
[13] W.S. Cohn, “Weighted Bergman projection and tangential area integrals”, Studia Mathematica, 106:1 (1993), 59–76 | MR | Zbl
[14] W.S. Cohn, “Bergman projection and Hardy spaces”, Journal of Functional Analysis, 144 (1997), 1–19 | DOI | MR | Zbl
[15] J. Ortega, J. Fabrega, “Holomorphic Triebel — Lizorkin type spaces”, Journal of Functional Analysis, 151:1 (1997), 177–212 | DOI | MR | Zbl
[16] O.E. Antonenkova, Reproducing kernels, Cauchy transform of continuous linear functionals on the weighted spaces of holomorphic functions, PhD Thesis, Bryansk, 2005 (In Russ.) | MR
[17] E.V. Povprits, Characterization of the traces and the Cauchy transform continuous linear functionals in anisotropic weighted spaces of analytic functions with mixed norm, PhD Thesis, Bryansk, 2015 (In Russ.)
[18] R.F. Shamoyan, O. Mihic, “On traces of holomorphic functions in polyballs”, Applied Analysis and Discrete Mathematics, 3 (2009), 42–48 | MR | Zbl
[19] R.F. Shamoyan, O. Mihic, “On traces of $Q_p$ type spaces and mixed norm analytic function spaces in polyballs”, Siauliau Mathematical Seminar, 5:13 (2010), 101–119 | MR | Zbl
[20] R.F. Shamoyan, O. Mihic, “In search of traces of some holomorphic spaces on polyballs”, Revista Notas Venezolana, 4 (2010), 1–23 | MR
[21] R.F. Shamoyan, S.M. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $\mathbb C^n$”, Issues of analysis, 4:1 (2015), 73–94 | DOI | MR | Zbl
[22] R.F. Shamoyan, S.M. Kurilenko, “Bergman type integral operators on semiproducts of the tube domains over symmetric cones and multifunctionals analytic spaces”, Kragujevac Journal of Mathematics, 40:2 (2016), 194–222 | DOI | MR | Zbl
[23] R.F. Shamoyan, O. Mihic, “Analytic classes on expanded disk and Bergman-type integral operators on them”, Journal of Inequalities and Applications, 2009, 353801 | DOI | Zbl
[24] O.E. Antonenkova, F.A. Shamoyan, “The Cauchy transform of continuous linear functionals and projections on the weighted spaces of analytic functions”, Siberian Mathematical Journal, 46:6 (2005), 969–994 | DOI | MR | Zbl
[25] S. Gadbois, “Mixed norm generalization of Bergman spaces and duality”, Proceedings of American Mathematical Society, 104:4 (1988), 1171–1180 | DOI | MR | Zbl
[26] B.F. Sehba, “Bergman type operators in tube domains over symmetric cones”, Proceedings of Edinburg Mathematical Society, 52:2 (2009), 529–544 | DOI | MR | Zbl
[27] D. Gu, “Bergman projections and duality in weighted mixed-norm spaces of analytic functions”, Michigan Mathematical Journal, 39:1 (1992), 71–84 | DOI | MR | Zbl
[28] O.V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. I, II, John Wiley Sons, New York, Toronto, London, 1978, 1979 | MR | Zbl
[29] S.M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 420 pp. | MR
[30] R.F. Shamoyan, O. Mihic, “On some new analytic function spaces in polyball”, Palestine Journal of Mathematics, 4:1 (2015), 105–107 | MR | Zbl
[31] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2004, 271 pp. | MR
[32] D. Bekolle, A. Bonami, G. Garrigos, F. Ricci, B. Sehba, “Analytic Besov spaces and Hardy type inequalities in tube domains over symmetric cones”, Journal für die reine und angewandte Mathematik, 647 (2010), 25–56 | MR | Zbl
[33] R.F. Shamoyan, E.V. Povprits, “Sharp theorems on traces in analytic spaces in tube domains over symmetric cones”, Journal of Siberian Federal University. Series Mathematics and Physics, 6:4 (2013), 527–538
[34] A.E. Djrbashian, F.A. Shamoyan, Topics in the Theory of $A^p_{\alpha }$-Spaces, Leipzig, BSB B.G. Teubner, 1988 | MR | Zbl
[35] J. Xiao, Geometric $Q_p$ Functions, Frontiers in Mathematics, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl
[36] J. Xiao, Holomorphic $Q$ Classes, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1767, 2001, 104 pp. | MR
[37] M. Andersson, H. Carlsson, “$Q_p$ spaces in strictly pseudoconvex domains”, Journal d'Analyse Mathematique, 84:1 (2001), 335–559 | DOI | MR
[38] R.F. Shamoyan, “On some problems connected with diagonal map in some spaces of analytic functions”, Mathematica Bohemica, 133:4 (2008), 351–366 | MR | Zbl
[39] S.Y. Li, W. Luo, “Characterizations for Besov spaces and applications, Part I”, Journal of Mathematical Analysis and Applications, 310 (2005), 477–491 | DOI | MR | Zbl
[40] A. Karapetyan, “Bounded projections in weighted function spaces in generalized unit disc”, Annales Polonici Mathematici, 462:3 (1995), 193–218 | MR
[41] D. Bekolle, A. Kagon, “Reproducing properties and $L^p$ estimates for Bergman projections in Siegel domains of type II”, Studia Mathematica, 15:3 (1995), 219–239 | MR
[42] S. Yamaji, “Composition operators on the Bergman space in minimal bounded domains”, Hiroshima Mathematical Journal, 43 (2003), 107–127 | MR
[43] M. Englis, T. Hanninen, J. Taskinen,, “Minimal $L^{\infty}$ type spaces on strictly pseudoconvex domains on which Bergman projection is continuous”, Houston Journal of Mathematics, 32:1 (2006), 253–275 | MR | Zbl
[44] S.Y. Li, W. Luo, “Analysis on Besov spaces II: Embedding duality theorems”, Journal of Mathematical Analysis and Applications, 333:2 (2007), 1189–1202 | DOI | MR | Zbl
[45] Ph. Charpentier, Y. Dupain, “Estimates for the Bergman and Szego projections for pseudoconvex domains of finite type with locally diagonalizable Levi Form”, Publicacions Matemàtiques, 50:2 (2006), 413–446 | DOI | MR | Zbl
[46] S. Cho, “A mapping property of the Bergman projection on certain pseudoconvex domains”, Tohoku Mathematical Journal, 48:4 (1996), 533–542 | DOI | MR | Zbl
[47] D. Ehsani, I. Lieb, “$L^p$ estimates for the Bergman projection on pseudoconvex domains”, Mathematische Nachrichten, 281:7 (2008), 916–929 | DOI | MR | Zbl
[48] R.F. Shamoyan, O. Mihic, “Some remarks on weakly invertible functions in the unit ball and polydisk”, Iranian Journal of Mathematical Sciences and Informatics, 4:1 (2009), 43–55 | MR
[49] H.R. Cho, J. Lee, “Inequalities for the integral means of holomorphic functions in the strongly pseudoconvex domain”, Communications of the Korean Mathematical Society, 20:2 (2005), 339–350 | DOI | MR | Zbl
[50] E. Ligocka, “On the Forelli — Rudin construction and weighted Bergman projections”, Studia Mathematica, 94 (1989), 257–272 | MR | Zbl
[51] H. Boas, “Holomorphic reproducing kernels in Reinhardt domains”, Pacific Journal of Mathematics, 112:2 (1984), 273–292 | DOI | MR | Zbl
[52] N.M. Tkachenko (Makhina), Weighted $L^p$ estimates analytic and harmonic functions in a simply connected domains of complex plane, PhD Thesis, Bryansk, 2009 (In Russ.)
[53] N.M. Tkachenko (Makhina), F.A. Shamoyan, “The Hardy — Littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary”, Journal of Mathematical Physics, Analysis, Geometry, 5:2 (2009), 192–210 | MR | Zbl
[54] K. Hahn, J. Mitchell, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in $C^n$”, Journal of Mathematical Analysis and Applications, 56:2 (1976), 379–396 | DOI | MR | Zbl
[55] W. Chen, “Lipschitz spaces of holomorphic functions over bounded symmetric domains in $C^n$”, Journal of Mathematical Analysis and Applications, 81:1 (1981), 63–87 | DOI | MR | Zbl
[56] C. Nana, “$L^{p,q}$-boundedness of Bergman projections in homogeneous Sigel domains of type II”, Journal of Fourier Analysis and Applications, 19 (2013), 997–1019 | DOI | MR | Zbl
[57] S.G. Krantz, “A direct connection between the Bergman and Szego projections”, Complex Analysis and Operators Theory, 8 (2014), 571–579 | DOI | MR | Zbl
[58] D. Kalaj, M. Markovic, “Norm of the Bergman projection”, Mathematica Scandinavica, 115:1 (2014), 143–160 | DOI | MR | Zbl
[59] A. Bonami, G. Garrigos, C. Nana, “$L^p-L^q$ estimates for Bergman projections in bounded symmetric domains of tube type”, Journal of Geometric Analysis, 24:4 (2014), 1737–1769 | DOI | MR | Zbl
[60] A. Bonami, C. Nana, “Some questions related to the Bergman projection in symmetric domains”, Advances in Pure and Applied Mathematics, 6:4 (2015) | DOI | MR
[61] A.R. Legg, “The Khavinson — Shapiro conjecture and the Bergman projection in one and several complex variables”, Computational Methods and Function Theory, 16:2 (2015), 231–242 | DOI | MR
[62] J.Á. Peláez, J. Rättyä, On the boundedness of the Bergman projection, accessed 10.12.2016, arXiv: abs/1501.03957