Symmetry analysis of nonlinear pseudoparabolic equation
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 152-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group classification is obtained for quasilinear pseudoparabolic equation with a free element depending on the first order time derivative. Four-dimensional kernel of principal groups and all free element specifications up to equivalence transformations which correspond to additional symmetries of the equation are found. For some nonlinear specifications optimal one-dimensional subalgebras system of five-dimensional principal Lie algebra and corresponding invariant solutions or invariant submodels are calculated. Besides, nonlinear self-adjointness is shown for the operator that defining the linear equation of the species. A series of conservation laws of a linear equation was searched.
Keywords: pseudoparabolic equation, group analysis, group classification, invariant solution, conservation law.
@article{CHFMJ_2017_2_2_a1,
     author = {E. A. Bezbogova and V. E. Fedorov and A. S. Avilovich},
     title = {Symmetry analysis of  nonlinear pseudoparabolic equation},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {152--168},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a1/}
}
TY  - JOUR
AU  - E. A. Bezbogova
AU  - V. E. Fedorov
AU  - A. S. Avilovich
TI  - Symmetry analysis of  nonlinear pseudoparabolic equation
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 152
EP  - 168
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a1/
LA  - ru
ID  - CHFMJ_2017_2_2_a1
ER  - 
%0 Journal Article
%A E. A. Bezbogova
%A V. E. Fedorov
%A A. S. Avilovich
%T Symmetry analysis of  nonlinear pseudoparabolic equation
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 152-168
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a1/
%G ru
%F CHFMJ_2017_2_2_a1
E. A. Bezbogova; V. E. Fedorov; A. S. Avilovich. Symmetry analysis of  nonlinear pseudoparabolic equation. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 2, pp. 152-168. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_2_a1/

[1] G.I. Barenblatt , Iu.P. Zheltov , I.N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata)”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] G.A. Demidenko , S.V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003, 490 pp. | MR | MR | Zbl

[3] A.G. Sveshnikov , A.B. Al'shin , M.O. Korpusov , Yu.D. Pletner, Linear and nonlinear Sobolev type equations, Fizmatlit Publ., Moscow, 2007, 736 pp. (In Russ.)

[4] A.V. Panov, “Group classification of a class of semilinear pseudoparabolic equations”, Ufa Mathematical Journal, 5:4 (2013), 101–111 | DOI | MR | Zbl

[5] A.V. Panov, “Optimal system of subalgebras of the direct sum of two ideals”, Journal of Mathematical Sciences, 215:4 (2016), 537–542 | DOI | MR | Zbl

[6] L.V. Ovsyannikov, Group Analysis of Differential Equations, Transl. from the Russian, Academic Press, New York, 1982, 416 pp. | MR | MR | Zbl

[7] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Springer, 1985 | MR | MR

[8] P.J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986 | MR | MR | Zbl

[9] N.H. Ibragimov, Selected Works, v. 1,2, Alga Publ., Blekinge Institute of Technology, Karlskrona, Sweden, 2001

[10] Yu.A. Chirkunov, S.V. Khabirov, Elements of symmetry analysis for differential equations of the continuum mechanics, Novosibirsk State Technical University Publ., Novosibirsk, 2012, 659 pp. (In Russ.)

[11] L.V. Ovsyannikov, “The "podmodeli" program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 601–627 | DOI | MR | Zbl

[12] N.H. Ibragimov, “Nonlinear self-agjointness in constructing conservation laws”, Archives of ALGA, 7/8 (2010–2011), 1–99