Solvability of control problems for degenerate evolution equations of fractional order
Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability conditions are found for optimal control problems with various goal functionals for the distributed systems described by both linear and nonlinear equations not resolved with respect to the fractional time derivative of Gerasimov — Kaputo. Abstract results are applied for the research of optimal control problem to the equations system of the dynamics of the fractional viscoelastic Kelvin — Voigt body.
Keywords: optimal control, distributed control system, degenerate evolution equation, Gerasimov — Caputo fractional derivative.
@article{CHFMJ_2017_2_1_a5,
     author = {M. V. Plekhanova},
     title = {Solvability of control problems for degenerate evolution equations of fractional order},
     journal = {\v{C}el\^abinskij fiziko-matemati\v{c}eskij \v{z}urnal},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a5/}
}
TY  - JOUR
AU  - M. V. Plekhanova
TI  - Solvability of control problems for degenerate evolution equations of fractional order
JO  - Čelâbinskij fiziko-matematičeskij žurnal
PY  - 2017
SP  - 53
EP  - 65
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a5/
LA  - ru
ID  - CHFMJ_2017_2_1_a5
ER  - 
%0 Journal Article
%A M. V. Plekhanova
%T Solvability of control problems for degenerate evolution equations of fractional order
%J Čelâbinskij fiziko-matematičeskij žurnal
%D 2017
%P 53-65
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a5/
%G ru
%F CHFMJ_2017_2_1_a5
M. V. Plekhanova. Solvability of control problems for degenerate evolution equations of fractional order. Čelâbinskij fiziko-matematičeskij žurnal, Tome 2 (2017) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/CHFMJ_2017_2_1_a5/

[1] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2011, 450 pp. | MR

[2] V. V. Uchaykin, Fractional derivatives method, Artishok Publ., Ulyanovsk, 2008, 510 pp. (In Russ.)

[3] F. Mainardi, “The time fractional diffusion-wave equations”, Radiophysics and Quantum Electronics, 38 (1995), 13–24 | DOI | MR

[4] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, PhD thesis, Eindhoven Univ. of Technology, Univ. Press Facilities, 2001, 107 pp. | MR | Zbl

[5] A. V. Pskhu, Partial differential equations of fractional order, Nauka Publ., Moscow, 2005, 199 pp. (In Russ.) | MR

[6] M. V. Plekhanova, A. F. Islamova, “Issledovanie linearizovannoi sistemy uravnenii Bussineska metodami teorii vyrozhdennykh polugrupp”, Vestn. Chelyab. gos. un-ta. Matematika. Mekhanika. Informatika, 20 (158):11 (2009), 62–69 (In Russ.) | MR

[7] V. E. Fedorov, D. M. Gordievskikh, M. V. Plekhanova, “quations in Banach spaces with a degenerate operator under a fractional derivative”, Differential equations, 51:10 (2015), 1360–1368 | DOI | DOI | MR | Zbl

[8] M. V. Plekhanova, “Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative”, Discrete and Continuous Dynamical systems. Series S, 9:3 (2016), 833–847 | DOI | MR

[9] M. V. Plekhanova, “Nonlinear equations with degenerate operator at fractional Caputo derivative”, Mathematical methods in the applied sciences | DOI

[10] V. E. Fedorov, M. V. Plekhanova, “Weak solutions and the quadratic regulator problem for a degenerate differential equation in Hilbert space”, Computational technologies, 9:2 (2004), 92–102 (In Russ.) | MR | Zbl

[11] M. V. Plekhanova, V. E. Fedorov, “Zadacha optimalnogo upravleniya dlya odnogo klassa vyrozhdennykh uravnenii”, Izv. RAN. Teoriya i sistemy upr., 2004, no. 5, 40–44 | MR

[12] M. V. Plekhanova, V. E. Fedorov, “An optimality criterion in a control problem for a Sobolev-type linear equation”, Journal of Computer and System Sciences International, 46:2 (2007), 248–254 | DOI | MR | Zbl

[13] M. V. Plekhanova, “Mixed control problem for the linearized quasi-stationary phase field system of equations”, Materials Science Forum, 845 (2016), 170–173 | DOI

[14] M. V. Plekhanova, “Strong solutions of a nonlinear degenerate evolution equation of fractional order”, Siberian Journal of Pure and Applied Mathematics, 16:3 (2016), 61–74 (In Russ.) | MR

[15] A. V. Fursikov, Optimal control for distributed systems. Theory and applications, Nauchnaya Kniga Publ., Novosibirsk, 1999, 350 pp. (In Russ.)

[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Publ., Amsterdam–Boston–Heidelberg, 2006, 541 pp. | MR | Zbl

[17] A. N. Gerasimov, “Generalization of linear deformation laws and their application to internal friction problems”, Applied mathematics and mechanics, 12 (1948), 529–539 (In Russ.) | MR

[18] M. Caputo, “Linear model of dissipation whose $Q$ is almost frequency independent”, Geophysical J. of the Royal Astronomical Soc., 13 (1967), 383–393 | DOI | MR

[19] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, vii+216 pp. | MR | Zbl

[20] J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Non-Linéaires, Dunod Gauthier-Villars, Paris, 1969, xx+554 pp. (In Russ.) | MR | MR

[21] M.O. Korpusov , A.G. Sveshnikov, Nonlinear functional analysis and mathematical modeling in physics: Geometric and topological properties of linear spaces, Krasand Publ., Moscow, 2011, 416 pp. (In Russ.)

[22] A.P. Oskolkov, “To the stability theory for solutions of the semilinear dissipative Sobolev type equations”, Notes of scientific seminars of POMI RAS, 200, 1992, 139–148 (In Russ.)